IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v51y2015icp346-353.html
   My bibliography  Save this article

Investigating the value of fusion energy using the Global Change Assessment Model

Author

Listed:
  • Turnbull, D.
  • Glaser, A.
  • Goldston, R.J.

Abstract

The availability of fusion energy could prove valuable in meeting carbon mitigation targets over the course of the century. We use recent cost estimates for future fusion power plants in order to incorporate fusion into the Global Change Assessment Model (GCAM), a long-term energy and environment model used to study the interaction between technology, climate, and public policy. Results show that fusion's growth will depend on: the chosen carbon mitigation target (if any); the availability of competing carbon-neutral options for the provision of baseload electrical power, in particular nuclear fission as well as carbon capture and storage; the chosen discount rate; the initial year of availability; and the assumed costs of fusion electricity. We quantify the present value of the fusion option while varying the assumptions about these other parameters, and we find that it is, in general for our range of assumptions, significantly larger than the estimated cost of a comprehensive R&D plan to develop fusion energy. The results emphasize the wisdom in hedging against uncertainty in future technology availability by pursuing the development of multiple options that could feasibly play a major role in the latter half of the century.

Suggested Citation

  • Turnbull, D. & Glaser, A. & Goldston, R.J., 2015. "Investigating the value of fusion energy using the Global Change Assessment Model," Energy Economics, Elsevier, vol. 51(C), pages 346-353.
  • Handle: RePEc:eee:eneeco:v:51:y:2015:i:c:p:346-353
    DOI: 10.1016/j.eneco.2015.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988315002224
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2015.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
    2. Son H. Kim, Jae Edmonds, Josh Lurz, Steven J. Smith, and Marshall Wise, 2006. "The objECTS Framework for integrated Assessment: Hybrid Modeling of Transportation," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 63-92.
    3. Grubler, Arnulf, 2010. "The costs of the French nuclear scale-up: A case of negative learning by doing," Energy Policy, Elsevier, vol. 38(9), pages 5174-5188, September.
    4. Richels, Richard G. & Blanford, Geoffrey J., 2008. "The value of technological advance in decarbonizing the U.S. economy," Energy Economics, Elsevier, vol. 30(6), pages 2930-2946, November.
    5. Paul L. Joskow & John E. Parsons, 2012. "The Future of Nuclear Power After Fukushima," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    6. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    7. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    8. M. Mitchell Waldrop, 2012. "Nuclear energy: Radical reactors," Nature, Nature, vol. 492(7427), pages 26-29, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Diesendorf & David Roser & Haydn Washington, 2023. "Analyzing the Nuclear Weapons Proliferation Risk Posed by a Mature Fusion Technology and Economy," Energies, MDPI, vol. 16(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    2. Pugh, Graham & Clarke, Leon & Marlay, Robert & Kyle, Page & Wise, Marshall & McJeon, Haewon & Chan, Gabriel, 2011. "Energy R&D portfolio analysis based on climate change mitigation," Energy Economics, Elsevier, vol. 33(4), pages 634-643, July.
    3. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    4. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
    5. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    6. Parry, Ian, 2015. "Designing Fiscal Policy to Address the External Costs of Energy," International Review of Environmental and Resource Economics, now publishers, vol. 8(1), pages 1-56, May.
    7. Sven-Olof Fridolfsson and Thomas P. Tangeras, 2015. "Nuclear Capacity Auctions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    8. Linares, Pedro & Conchado, Adela, 2013. "The economics of new nuclear power plants in liberalized electricity markets," Energy Economics, Elsevier, vol. 40(S1), pages 119-125.
    9. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
    10. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    11. Mattauch, Linus & Creutzig, Felix & Edenhofer, Ottmar, 2015. "Avoiding carbon lock-in: Policy options for advancing structural change," Economic Modelling, Elsevier, vol. 50(C), pages 49-63.
    12. Béla Nagy & J Doyne Farmer & Quan M Bui & Jessika E Trancik, 2013. "Statistical Basis for Predicting Technological Progress," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
    13. Paul Lehmann & Patrik Söderholm, 2018. "Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 475-505, October.
    14. Yu Sang Chang & Dosoung Choi & Hann Earl Kim, 2017. "Dynamic Trends of Carbon Intensities among 127 Countries," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    15. Roger Fouquet, 2012. "Economics of Energy and Climate Change: Origins, Developments and Growth," Working Papers 2012-08, BC3.
    16. Palmer, Karen & Burtraw, Dallas, 2005. "Cost-effectiveness of renewable electricity policies," Energy Economics, Elsevier, vol. 27(6), pages 873-894, November.
    17. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
    18. Scrieciu, S. Şerban & Barker, Terry & Ackerman, Frank, 2013. "Pushing the boundaries of climate economics: critical issues to consider in climate policy analysis," Ecological Economics, Elsevier, vol. 85(C), pages 155-165.
    19. Fischer, Carolyn & Preonas, Louis, 2010. "Combining Policies for Renewable Energy: Is the Whole Less Than the Sum of Its Parts?," International Review of Environmental and Resource Economics, now publishers, vol. 4(1), pages 51-92, June.
    20. Dosi, Giovanni & Grazzi, Marco & Mathew, Nanditha, 2017. "The cost-quantity relations and the diverse patterns of “learning by doing”: Evidence from India," Research Policy, Elsevier, vol. 46(10), pages 1873-1886.

    More about this item

    Keywords

    Integrated assessment modeling; Carbon mitigation; Technological change; Fusion energy; Climate change;
    All these keywords.

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:51:y:2015:i:c:p:346-353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.