IDEAS home Printed from https://ideas.repec.org/a/eee/chieco/v49y2018icp1-23.html
   My bibliography  Save this article

Innovation suppression and migration effect: The unintentional consequences of environmental regulation

Author

Listed:
  • Shi, Beibei
  • Feng, Chen
  • Qiu, Meng
  • Ekeland, Anders

Abstract

Carbon emissions and trading system as an effective means of mitigating greenhouse gas emissions, has been implemented in Europe and has received strong academic attention, but this paper focuses on whether China's Carbon Emissions and Trading Pilot (CCETP) will have an impact on enterprise innovation. In the course of the study, this policy provides us with a “quasi-natural experiment”. This paper focuses on the causal effect of the environmental regulation of CCETP on the Chinese enterprises innovation, and according to difference-in-differences (DID) and difference-in-difference-in-differences (DDD) methods, it is found that CCETP will significantly reduce the enterprise innovation, in the meantime, this causal mechanism has a migration effect which means this inhibitory effect is not only effective for regulated enterprises, but also has a significant impact on non-regulated enterprises and other enterprises in the local region, especially on high pollution and stated-owned enterprises and the results are still valid after a series of robustness tests. In the meantime, we have explored the mechanism of this effect. This paper provides a new reference perspective for the formulation of environmental regulation policies.

Suggested Citation

  • Shi, Beibei & Feng, Chen & Qiu, Meng & Ekeland, Anders, 2018. "Innovation suppression and migration effect: The unintentional consequences of environmental regulation," China Economic Review, Elsevier, vol. 49(C), pages 1-23.
  • Handle: RePEc:eee:chieco:v:49:y:2018:i:c:p:1-23
    DOI: 10.1016/j.chieco.2017.12.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1043951X17301980
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chieco.2017.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Lanoie & Michel Patry & Richard Lajeunesse, 2008. "Environmental regulation and productivity: testing the porter hypothesis," Journal of Productivity Analysis, Springer, vol. 30(2), pages 121-128, October.
    2. Gray, Wayne B. & Shadbegian, Ronald J., 2003. "Plant vintage, technology, and environmental regulation," Journal of Environmental Economics and Management, Elsevier, vol. 46(3), pages 384-402, November.
    3. Wayne B Gray & Ronald J Shadbegian, 1994. "Pollution Abatement Costs, Regulation And Plant-Level Productivity," Working Papers 94-14, Center for Economic Studies, U.S. Census Bureau.
    4. Lanjouw, Jean Olson & Mody, Ashoka, 1996. "Innovation and the international diffusion of environmentally responsive technology," Research Policy, Elsevier, vol. 25(4), pages 549-571, June.
    5. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    6. Martin, Ralf & Muûls, Mirabelle & de Preux, Laure B. & Wagner, Ulrich J., 2014. "On the empirical content of carbon leakage criteria in the EU Emissions Trading Scheme," Ecological Economics, Elsevier, vol. 105(C), pages 78-88.
    7. John A. List & Daniel L. Millimet & Per G. Fredriksson & W. Warren McHone, 2003. "Effects of Environmental Regulations on Manufacturing Plant Births: Evidence from a Propensity Score Matching Estimator," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 944-952, November.
    8. Rubashkina, Yana & Galeotti, Marzio & Verdolini, Elena, 2015. "Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors," Energy Policy, Elsevier, vol. 83(C), pages 288-300.
    9. Hoffmann, Volker H., 2007. "EU ETS and Investment Decisions:: The Case of the German Electricity Industry," European Management Journal, Elsevier, vol. 25(6), pages 464-474, December.
    10. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    11. Barry Anderson & Corrado Di Maria, 2011. "Abatement and Allocation in the Pilot Phase of the EU ETS," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(1), pages 83-103, January.
    12. Greenstone, Michael & Gayer, Ted, 2009. "Quasi-experimental and experimental approaches to environmental economics," Journal of Environmental Economics and Management, Elsevier, vol. 57(1), pages 21-44, January.
    13. Yang, Chih-Hai & Tseng, Yu-Hsuan & Chen, Chiang-Ping, 2012. "Environmental regulations, induced R&D, and productivity: Evidence from Taiwan's manufacturing industries," Resource and Energy Economics, Elsevier, vol. 34(4), pages 514-532.
    14. Ralf Martin & Mirabelle Mu?ls & Laure B. de Preux & Ulrich J. Wagner, 2014. "Industry Compensation under Relocation Risk: A Firm-Level Analysis of the EU Emissions Trading Scheme," American Economic Review, American Economic Association, vol. 104(8), pages 2482-2508, August.
    15. Rogge, Karoline S. & Schleich, Joachim & Haussmann, Philipp & Roser, Annette & Reitze, Felix, 2011. "The role of the regulatory framework for innovation activities: The EU ETS and the German paper industry," Working Papers "Sustainability and Innovation" S1/2011, Fraunhofer Institute for Systems and Innovation Research (ISI).
    16. Carrión-Flores, Carmen E. & Innes, Robert, 2010. "Environmental innovation and environmental performance," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 27-42, January.
    17. Petra Moser & Alessandra Voena, 2012. "Compulsory Licensing: Evidence from the Trading with the Enemy Act," American Economic Review, American Economic Association, vol. 102(1), pages 396-427, February.
    18. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
    19. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    20. Oecd & Nea, 2011. "International Regulatory Activities," Nuclear Law Bulletin, OECD Publishing, vol. 2010(2), pages 89-91.
    21. Poncet, Sandra, 2003. "Measuring Chinese domestic and international integration," China Economic Review, Elsevier, vol. 14(1), pages 1-21.
    22. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
    23. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    24. Hamamoto, Mitsutsugu, 2006. "Environmental regulation and the productivity of Japanese manufacturing industries," Resource and Energy Economics, Elsevier, vol. 28(4), pages 299-312, November.
    25. Jan Abrell & Anta Ndoye Faye & Georg Zachmann, 2011. "Assessing the impact of the EU ETS using firm level data," Working Papers of BETA 2011-15, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    26. Rogge, Karoline S. & Hoffmann, Volker H., 2010. "The impact of the EU ETS on the sectoral innovation system for power generation technologies - Findings for Germany," Energy Policy, Elsevier, vol. 38(12), pages 7639-7652, December.
    27. Popp, David, 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany," Journal of Environmental Economics and Management, Elsevier, vol. 51(1), pages 46-71, January.
    28. Michael Grubb & Christian Azar & U. Martin Persson, 2005. "Allowance allocation in the European emissions trading system: a commentary," Climate Policy, Taylor & Francis Journals, vol. 5(1), pages 127-136, January.
    29. Stavins, Robert, 2007. "A U.S. Cap-and-Trade System to Address Global Climate Change," Working Paper Series rwp07-052, Harvard University, John F. Kennedy School of Government.
    30. Michael E. Porter & Claas van der Linde, 1995. "Toward a New Conception of the Environment-Competitiveness Relationship," Journal of Economic Perspectives, American Economic Association, vol. 9(4), pages 97-118, Fall.
    31. Borghesi, Simone & Cainelli, Giulio & Mazzanti, Massimiliano, 2012. "Brown Sunsets and Green Dawns in the Industrial Sector: Environmental Innovations, Firm Behavior and the European Emission Trading," Climate Change and Sustainable Development 121701, Fondazione Eni Enrico Mattei (FEEM).
    32. Anger, Niels & Oberndorfer, Ulrich, 2008. "Firm performance and employment in the EU emissions trading scheme: An empirical assessment for Germany," Energy Policy, Elsevier, vol. 36(1), pages 12-22, January.
    33. Rogge, Karoline S. & Schneider, Malte & Hoffmann, Volker H., 2011. "The innovation impact of the EU Emission Trading System -- Findings of company case studies in the German power sector," Ecological Economics, Elsevier, vol. 70(3), pages 513-523, January.
    34. de Vries, F.P. & Withagen, C.A.A.M., 2005. "Innovation and environmental stringency : The case of sulfur dioxide abatement," Other publications TiSEM 9f3f79ab-2646-4f72-845c-4, Tilburg University, School of Economics and Management.
    35. Brunnermeier, Smita B. & Cohen, Mark A., 2003. "Determinants of environmental innovation in US manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 45(2), pages 278-293, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yan & Shen, Neng, 2016. "Environmental regulation and environmental productivity: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 758-766.
    2. Rubashkina, Yana & Galeotti, Marzio & Verdolini, Elena, 2015. "Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors," Energy Policy, Elsevier, vol. 83(C), pages 288-300.
    3. Chen Feng & Beibei Shi & Rong Kang, 2017. "Does Environmental Policy Reduce Enterprise Innovation?—Evidence from China," Sustainability, MDPI, vol. 9(6), pages 1-24, May.
    4. Ren, Shenggang & Hu, Yucai & Zheng, Jingjing & Wang, Yangjie, 2020. "Emissions trading and firm innovation: Evidence from a natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    5. Raphael Calel, 2020. "Adopt or Innovate: Understanding Technological Responses to Cap-and-Trade," American Economic Journal: Economic Policy, American Economic Association, vol. 12(3), pages 170-201, August.
    6. Ren, Shenggang & Yang, Xuanyu & Hu, Yucai & Chevallier, Julien, 2022. "Emission trading, induced innovation and firm performance," Energy Economics, Elsevier, vol. 112(C).
    7. Joltreau, Eugénie & Sommerfeld, Katrin, 2016. "Why does emissions trading under the EU ETS not affect firms' competitiveness? Empirical findings from the literature," ZEW Discussion Papers 16-062, ZEW - Leibniz Centre for European Economic Research.
    8. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    9. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    10. Borghesi, Simone & Cainelli, Giulio & Mazzanti, Massimiliano, 2015. "Linking emission trading to environmental innovation: Evidence from the Italian manufacturing industry," Research Policy, Elsevier, vol. 44(3), pages 669-683.
    11. Martínez-Zarzoso, Inmaculada & Bengochea-Morancho, Aurelia & Morales-Lage, Rafael, 2019. "Does environmental policy stringency foster innovation and productivity in OECD countries?," Energy Policy, Elsevier, vol. 134(C).
    12. Yang, Fei & Shi, Beibei & Xu, Ming & Feng, Chen, 2019. "Can reducing carbon emissions improve economic performance: Evidence from China," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 13, pages 1-39.
    13. Chiara Franco & Giovanni Marin, 2017. "The Effect of Within-Sector, Upstream and Downstream Environmental Taxes on Innovation and Productivity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(2), pages 261-291, February.
    14. Fabrizi, Andrea & Guarini, Giulio & Meliciani, Valentina, 2018. "Green patents, regulatory policies and research network policies," Research Policy, Elsevier, vol. 47(6), pages 1018-1031.
    15. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    16. Xu, Le & Yang, Lili & Li, Ding & Shao, Shuai, 2023. "Asymmetric effects of heterogeneous environmental standards on green technology innovation: Evidence from China," Energy Economics, Elsevier, vol. 117(C).
    17. Yao, Shiyue & Yu, Xueying & Yan, Sen & Wen, Shiyan, 2021. "Heterogeneous emission trading schemes and green innovation," Energy Policy, Elsevier, vol. 155(C).
    18. Huang, Youxing & Xu, Qi & Zhao, Yanping, 2021. "Short-run pain, long-run gain: Desulfurization investment and productivity," Energy Economics, Elsevier, vol. 102(C).
    19. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
    20. Zhang, Yijun & Li, Xiaoping & Song, Yi & Jiang, Feitao, 2021. "Can green industrial policy improve total factor productivity? Firm-level evidence from China," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 51-62.

    More about this item

    Keywords

    CCETP; Enterprise innovation; DID; DDD;
    All these keywords.

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chieco:v:49:y:2018:i:c:p:1-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/chieco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.