IDEAS home Printed from https://ideas.repec.org/r/pal/jorsoc/v60y2009i1d10.1057_jors.2009.2.html
   My bibliography  Save this item

Fifty years of scheduling: a survey of milestones

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Kaiping Luo, 2015. "Space‐Based Infrared Sensor Scheduling with High Uncertainty: Issues and Challenges," Systems Engineering, John Wiley & Sons, vol. 18(1), pages 102-113, January.
  2. Daniel Reich & Yuhui Shi & Marina Epelman & Amy Cohn & Ellen Barnes & Kirk Arthurs & Erica Klampfl, 2016. "Scheduling Crash Tests at Ford Motor Company," Interfaces, INFORMS, vol. 46(5), pages 409-423, October.
  3. Tzu-Li Chen & Chen-Yang Cheng & Yi-Han Chou, 2020. "Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming," Annals of Operations Research, Springer, vol. 290(1), pages 813-836, July.
  4. Guo-Sheng Liu & Jin-Jin Li & Ying-Si Tang, 2018. "Minimizing Total Idle Energy Consumption in the Permutation Flow Shop Scheduling Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(06), pages 1-19, December.
  5. Reinhard Bürgy, 2017. "A neighborhood for complex job shop scheduling problems with regular objectives," Journal of Scheduling, Springer, vol. 20(4), pages 391-422, August.
  6. Zhang, Liping & Tang, Qiuhua & Wu, Zhengjia & Wang, Fang, 2017. "Mathematical modeling and evolutionary generation of rule sets for energy-efficient flexible job shops," Energy, Elsevier, vol. 138(C), pages 210-227.
  7. S.S. Panwalkar & Christos Koulamas, 2015. "Scheduling research and the first decade of NRLQ: A historical perspective," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(4), pages 335-344, June.
  8. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
  9. R J Ormerod, 2010. "OR as rational choice: a decision and game theory perspective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(12), pages 1761-1776, December.
  10. Dušan Knop & Martin Koutecký, 2018. "Scheduling meets n-fold integer programming," Journal of Scheduling, Springer, vol. 21(5), pages 493-503, October.
  11. Devansh Jalota & Dario Paccagnan & Maximilian Schiffer & Marco Pavone, 2023. "Online Routing Over Parallel Networks: Deterministic Limits and Data-driven Enhancements," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 560-577, May.
  12. Ming-Hui Li & Dan-Yang Lv & Yuan-Yuan Lu & Ji-Bo Wang, 2024. "Scheduling with Group Technology, Resource Allocation, and Learning Effect Simultaneously," Mathematics, MDPI, vol. 12(7), pages 1-21, March.
  13. Manuel Ostermeier & Andreas Holzapfel & Heinrich Kuhn & Daniel Schubert, 2022. "Integrated zone picking and vehicle routing operations with restricted intermediate storage," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 795-832, September.
  14. Arda, Yasemin & Cattaruzza, Diego & François, Véronique & Ogier, Maxime, 2024. "Home chemotherapy delivery: An integrated production scheduling and multi-trip vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 317(2), pages 468-486.
  15. Ivan Kristianto Singgih & Onyu Yu & Byung-In Kim & Jeongin Koo & Seungdoe Lee, 2020. "Production scheduling problem in a factory of automobile component primer painting," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1483-1496, August.
  16. Jianping Li & Runtao Xie & Junran Lichen & Guojun Hu & Pengxiang Pan & Ping Yang, 2023. "Exact algorithms for solving the constrained parallel-machine scheduling problems with divisible processing times and penalties," Journal of Combinatorial Optimization, Springer, vol. 45(4), pages 1-19, May.
  17. Enrico Bartolini & Mauro Dell’Amico & Manuel Iori, 2017. "Scheduling cleaning activities on trains by minimizing idle times," Journal of Scheduling, Springer, vol. 20(5), pages 493-506, October.
  18. S. S. Panwalkar & Christos Koulamas, 2020. "Three-stage ordered flow shops with either synchronous flow, blocking or no-idle machines," Journal of Scheduling, Springer, vol. 23(1), pages 145-154, February.
  19. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
  20. Wegel, Sebastian & Ivanov, Anton & Lenz, Ralf & Volling, Thomas, 2024. "Scheduling of parallel continuous annealing lines with alternative processing modes to optimize efficiency under tardiness constraints," European Journal of Operational Research, Elsevier, vol. 316(1), pages 282-294.
  21. Zigao Wu & Shaohua Yu & Tiancheng Li, 2019. "A Meta-Model-Based Multi-Objective Evolutionary Approach to Robust Job Shop Scheduling," Mathematics, MDPI, vol. 7(6), pages 1-19, June.
  22. Benavides, Alexander J. & Ritt, Marcus & Miralles, Cristóbal, 2014. "Flow shop scheduling with heterogeneous workers," European Journal of Operational Research, Elsevier, vol. 237(2), pages 713-720.
  23. F. Hwang & M. Kovalyov & B. Lin, 2014. "Scheduling for fabrication and assembly in a two-machine flowshop with a fixed job sequence," Annals of Operations Research, Springer, vol. 217(1), pages 263-279, June.
  24. Vallada, Eva & Ruiz, Rubén & Framinan, Jose M., 2015. "New hard benchmark for flowshop scheduling problems minimising makespan," European Journal of Operational Research, Elsevier, vol. 240(3), pages 666-677.
  25. Gmys, Jan & Mezmaz, Mohand & Melab, Nouredine & Tuyttens, Daniel, 2020. "A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 284(3), pages 814-833.
  26. Giuseppe Lancia & Franca Rinaldi & Paolo Serafini, 2011. "A time-indexed LP-based approach for min-sum job-shop problems," Annals of Operations Research, Springer, vol. 186(1), pages 175-198, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.