IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v20y2017i4d10.1007_s10951-017-0532-2.html
   My bibliography  Save this article

A neighborhood for complex job shop scheduling problems with regular objectives

Author

Listed:
  • Reinhard Bürgy

    (Polytechnique Montréal)

Abstract

Due to the limited applicability in practice of the classical job shop scheduling problem, many researchers have addressed more complex versions of this problem by including additional process features, such as time lags, setup times, and buffer limitations, and have pursued objectives that are more practically relevant than the makespan, such as total flow time and total weighted tardiness. However, most proposed solution approaches are tailored to the specific scheduling problem studied and are not applicable to more general settings. This article proposes a neighborhood that can be applied for a large class of job shop scheduling problems with regular objectives. Feasible neighbor solutions are generated by extracting a job from a given solution and reinserting it into a neighbor position. This neighbor generation in a sense extends the simple swapping of critical arcs, a mechanism that is widely used in the classical job shop but that is not applicable in more complex job shop problems. The neighborhood is embedded in a tabu search, and its performance is evaluated with an extensive experimental study using three standard job shop scheduling problems: the (classical) job shop, the job shop with sequence-dependent setup times, and the blocking job shop, combined with the following five regular objectives: makespan, total flow time, total squared flow time, total tardiness, and total weighted tardiness. The obtained results support the validity of the approach.

Suggested Citation

  • Reinhard Bürgy, 2017. "A neighborhood for complex job shop scheduling problems with regular objectives," Journal of Scheduling, Springer, vol. 20(4), pages 391-422, August.
  • Handle: RePEc:spr:jsched:v:20:y:2017:i:4:d:10.1007_s10951-017-0532-2
    DOI: 10.1007/s10951-017-0532-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-017-0532-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-017-0532-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heinz Gröflin & Dinh Nguyen Pham & Reinhard Bürgy, 2011. "The flexible blocking job shop with transfer and set-up times," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 121-144, August.
    2. David Applegate & William Cook, 1991. "A Computational Study of the Job-Shop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 3(2), pages 149-156, May.
    3. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    4. Éric D. Taillard, 1994. "Parallel Taboo Search Techniques for the Job Shop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 108-117, May.
    5. Eugeniusz Nowicki & Czeslaw Smutnicki, 1996. "A Fast Taboo Search Algorithm for the Job Shop Problem," Management Science, INFORMS, vol. 42(6), pages 797-813, June.
    6. Michael Perregaard & Jens Clausen, 1998. "Parallel branch-and-bound methods for thejob-shop scheduling problem," Annals of Operations Research, Springer, vol. 83(0), pages 137-160, October.
    7. Mascis, Alessandro & Pacciarelli, Dario, 2002. "Job-shop scheduling with blocking and no-wait constraints," European Journal of Operational Research, Elsevier, vol. 143(3), pages 498-517, December.
    8. Groflin, Heinz & Klinkert, Andreas, 2007. "Feasible insertions in job shop scheduling, short cycles and stable sets," European Journal of Operational Research, Elsevier, vol. 177(2), pages 763-785, March.
    9. Mati, Yazid & Dauzère-Pérès, Stèphane & Lahlou, Chams, 2011. "A general approach for optimizing regular criteria in the job-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 212(1), pages 33-42, July.
    10. Diarmuid Grimes & Emmanuel Hebrard, 2015. "Solving Variants of the Job Shop Scheduling Problem Through Conflict-Directed Search," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 268-284, May.
    11. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F. Guerriero, 2008. "Hybrid Rollout Approaches for the Job Shop Scheduling Problem," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 419-438, November.
    2. G I Zobolas & C D Tarantilis & G Ioannou, 2009. "A hybrid evolutionary algorithm for the job shop scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 221-235, February.
    3. Tamssaouet, Karim & Dauzère-Pérès, Stéphane, 2023. "A general efficient neighborhood structure framework for the job-shop and flexible job-shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 311(2), pages 455-471.
    4. Da Col, Giacomo & Teppan, Erich C., 2022. "Industrial-size job shop scheduling with constraint programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    5. Mogali, Jayanth Krishna & Barbulescu, Laura & Smith, Stephen F., 2021. "Efficient primal heuristic updates for the blocking job shop problem," European Journal of Operational Research, Elsevier, vol. 295(1), pages 82-101.
    6. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
    7. Diarmuid Grimes & Emmanuel Hebrard, 2015. "Solving Variants of the Job Shop Scheduling Problem Through Conflict-Directed Search," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 268-284, May.
    8. Marco Pranzo & Dario Pacciarelli, 2016. "An iterated greedy metaheuristic for the blocking job shop scheduling problem," Journal of Heuristics, Springer, vol. 22(4), pages 587-611, August.
    9. Ramesh Bollapragada & Norman M. Sadeh, 2004. "Proactive release procedures for just‐in‐time job shop environments, subject to machine failures," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(7), pages 1018-1044, October.
    10. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    11. A. Ozolins, 2020. "A new exact algorithm for no-wait job shop problem to minimize makespan," Operational Research, Springer, vol. 20(4), pages 2333-2363, December.
    12. Carlo Mannino & Alessandro Mascis, 2009. "Optimal Real-Time Traffic Control in Metro Stations," Operations Research, INFORMS, vol. 57(4), pages 1026-1039, August.
    13. Paul M E Shutler, 2004. "A priority list based heuristic for the job shop problem: part 2 tabu search," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(7), pages 780-784, July.
    14. Z C Zhu & K M Ng & H L Ong, 2010. "A modified tabu search algorithm for cost-based job shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 611-619, April.
    15. Christoph Schuster, 2006. "No-wait Job Shop Scheduling: Tabu Search and Complexity of Subproblems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(3), pages 473-491, July.
    16. Amaral Armentano, Vinicius & Rigao Scrich, Cintia, 2000. "Tabu search for minimizing total tardiness in a job shop," International Journal of Production Economics, Elsevier, vol. 63(2), pages 131-140, January.
    17. Mascis, Alessandro & Pacciarelli, Dario, 2002. "Job-shop scheduling with blocking and no-wait constraints," European Journal of Operational Research, Elsevier, vol. 143(3), pages 498-517, December.
    18. Pisut Pongchairerks, 2019. "A Two-Level Metaheuristic Algorithm for the Job-Shop Scheduling Problem," Complexity, Hindawi, vol. 2019, pages 1-11, March.
    19. Francis Sourd & Wim Nuijten, 2000. "Multiple-Machine Lower Bounds for Shop-Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 12(4), pages 341-352, November.
    20. Susana Fernandes & Helena Ramalhinho-Lourenço, 2007. "A simple optimised search heuristic for the job-shop scheduling problem," Economics Working Papers 1050, Department of Economics and Business, Universitat Pompeu Fabra.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:20:y:2017:i:4:d:10.1007_s10951-017-0532-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.