My bibliography
Save this item
Consistent selection of the number of clusters via crossvalidation
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Julian Rossbroich & Jeffrey Durieux & Tom F. Wilderjans, 2022. "Model Selection Strategies for Determining the Optimal Number of Overlapping Clusters in Additive Overlapping Partitional Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 264-301, July.
- Chakraborty, Saptarshi & Paul, Debolina & Das, Swagatam, 2020. "Hierarchical clustering with optimal transport," Statistics & Probability Letters, Elsevier, vol. 163(C).
- Jingnan Zhang & Chengye Li & Junhui Wang, 2023. "A stochastic block Ising model for multi‐layer networks with inter‐layer dependence," Biometrics, The International Biometric Society, vol. 79(4), pages 3564-3573, December.
- Vincent Audigier & Ndèye Niang, 2023. "Clustering with missing data: which equivalent for Rubin’s rules?," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 623-657, September.
- Yu, Lu & Gu, Jiaying & Volgushev, Stanislav, 2024. "Spectral clustering with variance information for group structure estimation in panel data," Journal of Econometrics, Elsevier, vol. 241(1).
- Will Wei Sun & Xingye Qiao & Guang Cheng, 2016. "Stabilized Nearest Neighbor Classifier and its Statistical Properties," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1254-1265, July.
- Han Yu & Brian Chapman & Arianna Di Florio & Ellen Eischen & David Gotz & Mathews Jacob & Rachael Hageman Blair, 2019. "Bootstrapping estimates of stability for clusters, observations and model selection," Computational Statistics, Springer, vol. 34(1), pages 349-372, March.
- Victoria Gregory & Guido Menzio & David G. Wiczer, 2021.
"The Alpha Beta Gamma of the Labor Market,"
NBER Working Papers
28663, National Bureau of Economic Research, Inc.
- Victoria Gregory & Guido Menzio & David Wiczer, 2022. "The Alpha Beta Gamma of the Labor Market," Working Papers 22-10, Center for Economic Studies, U.S. Census Bureau.
- Victoria Gregory & Guido Menzio & David Wiczer, 2021. "The Alpha Beta Gamma of the Labor Market," Department of Economics Working Papers 21-02, Stony Brook University, Department of Economics.
- Victoria Gregory & Guido Menzio & David Wiczer, 2021. "The Alpha Beta Gamma of the Labor Market," Working Papers 2021-003, Federal Reserve Bank of St. Louis, revised Aug 2024.
- Zhao, Jiayang & Liu, Jie, 2023. "Homogeneous analysis on network effects in network autoregressive model," Finance Research Letters, Elsevier, vol. 58(PD).
- Kensuke Tanioka & Hiroshi Yadohisa, 2019. "Simultaneous Method of Orthogonal Non-metric Non-negative Matrix Factorization and Constrained Non-hierarchical Clustering," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 73-93, April.
- Jonas M. B. Haslbeck & Dirk U. Wulff, 2020. "Estimating the number of clusters via a corrected clustering instability," Computational Statistics, Springer, vol. 35(4), pages 1879-1894, December.
- Paul, Biplab & De, Shyamal K. & Ghosh, Anil K., 2022. "Some clustering-based exact distribution-free k-sample tests applicable to high dimension, low sample size data," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
- Xianpeng Mao & Yuning Yang, 2022. "Several approximation algorithms for sparse best rank-1 approximation to higher-order tensors," Journal of Global Optimization, Springer, vol. 84(1), pages 229-253, September.
- Peter Radchenko & Gourab Mukherjee, 2017. "Convex clustering via l 1 fusion penalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1527-1546, November.
- Lim, Alejandro & Chiang, Chin-Tsang & Teng, Jen-Chieh, 2021. "Estimating robot strengths with application to selection of alliance members in FIRST robotics competitions," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
- Minjie Wang & Tianyi Yao & Genevera I. Allen, 2023. "Supervised convex clustering," Biometrics, The International Biometric Society, vol. 79(4), pages 3846-3858, December.
- Jiangtao Duan & Wei Gao & Hao Qu & Hon Keung Tony, 2019. "Subspace Clustering for Panel Data with Interactive Effects," Papers 1909.09928, arXiv.org, revised Feb 2021.
- Rozmus Dorota, 2020. "Clustering Poland Among Eu Countries in Terms of a Sustainable Development Level in the Light of Various Cluster Stability Measures," Folia Oeconomica Stetinensia, Sciendo, vol. 20(1), pages 319-340, June.
- Tsubasa Ito & Shonosuke Sugasawa, 2023. "Grouped generalized estimating equations for longitudinal data analysis," Biometrics, The International Biometric Society, vol. 79(3), pages 1868-1879, September.
- Mao, Xianpeng & Yang, Yuning, 2022. "Best sparse rank-1 approximation to higher-order tensors via a truncated exponential induced regularizer," Applied Mathematics and Computation, Elsevier, vol. 433(C).
- Wang, Junhui & Fang, Yixin, 2013. "Analysis of presence-only data via semi-supervised learning approaches," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 134-143.
- Fang, Yixin & Wang, Junhui, 2012. "Selection of the number of clusters via the bootstrap method," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 468-477.
- Dario Cottafava & Giulia Sonetti & Paolo Gambino & Andrea Tartaglino, 2018. "Explorative Multidimensional Analysis for Energy Efficiency: DataViz versus Clustering Algorithms," Energies, MDPI, vol. 11(5), pages 1-18, May.
- Zhang, Yingying & Wang, Huixia Judy & Zhu, Zhongyi, 2019. "Quantile-regression-based clustering for panel data," Journal of Econometrics, Elsevier, vol. 213(1), pages 54-67.
- Yoshikazu Terada, 2014. "Strong Consistency of Reduced K-means Clustering," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 913-931, December.
- Zhang, Tonglin & Lin, Ge, 2021. "Generalized k-means in GLMs with applications to the outbreak of COVID-19 in the United States," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).