IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v163y2020ics0167715220300845.html
   My bibliography  Save this article

Hierarchical clustering with optimal transport

Author

Listed:
  • Chakraborty, Saptarshi
  • Paul, Debolina
  • Das, Swagatam

Abstract

Optimal Transport (OT) distances result in a powerful technique to compare the probability distributions. Defining a similarity measure between clusters has been an open problem in Statistics. This paper introduces a hierarchical clustering algorithm using the OT based distance measures and analyzes the performance of the proposed algorithm on standard datasets with respect to the existing and popular hierarchical clustering methods.

Suggested Citation

  • Chakraborty, Saptarshi & Paul, Debolina & Das, Swagatam, 2020. "Hierarchical clustering with optimal transport," Statistics & Probability Letters, Elsevier, vol. 163(C).
  • Handle: RePEc:eee:stapro:v:163:y:2020:i:c:s0167715220300845
    DOI: 10.1016/j.spl.2020.108781
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220300845
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108781?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Witten, Daniela M. & Tibshirani, Robert, 2010. "A Framework for Feature Selection in Clustering," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 713-726.
    2. Junhui Wang, 2010. "Consistent selection of the number of clusters via crossvalidation," Biometrika, Biometrika Trust, vol. 97(4), pages 893-904.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yutaka Iwakami & Hironori Takuma & Motoi Iwashita, 2020. "Improving Matching Process with Expanding and Classifying Criterial Keywords leveraging Word Embedding and Hierarchical Clustering Methods," The Review of Socionetwork Strategies, Springer, vol. 14(2), pages 193-204, October.
    2. Yihang Xu & Junxi Wu & Guoyan Zhao & Meng Wang & Xing Zhou, 2024. "II-LA-KM: Improved Initialization of a Learning-Augmented Clustering Algorithm for Effective Rock Discontinuity Grouping," Mathematics, MDPI, vol. 12(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Radchenko & Gourab Mukherjee, 2017. "Convex clustering via l 1 fusion penalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1527-1546, November.
    2. Fang, Yixin & Wang, Junhui, 2012. "Selection of the number of clusters via the bootstrap method," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 468-477.
    3. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    4. Yujia Li & Xiangrui Zeng & Chien‐Wei Lin & George C. Tseng, 2022. "Simultaneous estimation of cluster number and feature sparsity in high‐dimensional cluster analysis," Biometrics, The International Biometric Society, vol. 78(2), pages 574-585, June.
    5. Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
    6. Jeffrey Andrews & Paul McNicholas, 2014. "Variable Selection for Clustering and Classification," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 136-153, July.
    7. Mao, Xianpeng & Yang, Yuning, 2022. "Best sparse rank-1 approximation to higher-order tensors via a truncated exponential induced regularizer," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    8. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    9. Han Yu & Brian Chapman & Arianna Di Florio & Ellen Eischen & David Gotz & Mathews Jacob & Rachael Hageman Blair, 2019. "Bootstrapping estimates of stability for clusters, observations and model selection," Computational Statistics, Springer, vol. 34(1), pages 349-372, March.
    10. Zhiguang Huo & Li Zhu & Tianzhou Ma & Hongcheng Liu & Song Han & Daiqing Liao & Jinying Zhao & George Tseng, 2020. "Two-Way Horizontal and Vertical Omics Integration for Disease Subtype Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(1), pages 1-22, April.
    11. Charles Bouveyron & Camille Brunet-Saumard, 2014. "Discriminative variable selection for clustering with the sparse Fisher-EM algorithm," Computational Statistics, Springer, vol. 29(3), pages 489-513, June.
    12. Corinna Kleinert & Alexander Vosseler & Uwe Blien, 2018. "Classifying vocational training markets," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 61(1), pages 31-48, July.
    13. Hosik Choi & Seokho Lee, 2019. "Convex clustering for binary data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 991-1018, December.
    14. Pi, J. & Wang, Honggang & Pardalos, Panos M., 2021. "A dual reformulation and solution framework for regularized convex clustering problems," European Journal of Operational Research, Elsevier, vol. 290(3), pages 844-856.
    15. Zhao, Jiayang & Liu, Jie, 2023. "Homogeneous analysis on network effects in network autoregressive model," Finance Research Letters, Elsevier, vol. 58(PD).
    16. Ronglai Shen & Qianxing Mo & Nikolaus Schultz & Venkatraman E Seshan & Adam B Olshen & Jason Huse & Marc Ladanyi & Chris Sander, 2012. "Integrative Subtype Discovery in Glioblastoma Using iCluster," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-9, April.
    17. Bartelme, Dominick & Lan, Ting & Levchenko, Andrei A., 2024. "Specialization, market access and real income," Journal of International Economics, Elsevier, vol. 150(C).
    18. Axel Theorell & Yenan Troi Bryceson & Jakob Theorell, 2019. "Determination of essential phenotypic elements of clusters in high-dimensional entities—DEPECHE," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-15, March.
    19. Arias-Castro, Ery & Pu, Xiao, 2017. "A simple approach to sparse clustering," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 217-228.
    20. Abhishek Bhola & Shailendra Singh, 2019. "Visualisation and Modelling of High-Dimensional Cancerous Gene Expression Dataset," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:163:y:2020:i:c:s0167715220300845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.