IDEAS home Printed from https://ideas.repec.org/r/oup/biomet/v96y2009i3p735-749.html
   My bibliography  Save this item

A negative binomial model for time series of counts

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. William Dunsmuir & Jieyi He, 2017. "Marginal Estimation of Parameter Driven Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 120-144, January.
  2. Aknouche, Abdelhakim & Bendjeddou, Sara, 2016. "Negative binomial quasi-likelihood inference for general integer-valued time series models," MPRA Paper 76574, University Library of Munich, Germany, revised 03 Feb 2017.
  3. Zheng, Tingguo & Xiao, Han & Chen, Rong, 2015. "Generalized ARMA models with martingale difference errors," Journal of Econometrics, Elsevier, vol. 189(2), pages 492-506.
  4. Tianqing Liu & Xiaohui Yuan, 2013. "Random rounded integer-valued autoregressive conditional heteroskedastic process," Statistical Papers, Springer, vol. 54(3), pages 645-683, August.
  5. de Rezende, Rafael & Egert, Katharina & Marin, Ignacio & Thompson, Guilherme, 2022. "A white-boxed ISSM approach to estimate uncertainty distributions of Walmart sales," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1460-1467.
  6. Paolo Gorgi, 2020. "Beta–negative binomial auto‐regressions for modelling integer‐valued time series with extreme observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1325-1347, December.
  7. Fokianos, Konstantinos, 2024. "Multivariate Count Time Series Modelling," Econometrics and Statistics, Elsevier, vol. 31(C), pages 100-116.
  8. Shang, Zuofeng, 2012. "On latent process models in multi-dimensional space," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1259-1266.
  9. Peng, Rong & Lu, Zudi, 2024. "Semiparametric Averaging of Nonlinear Marginal Logistic Regressions and Forecasting for Time Series Classification," Econometrics and Statistics, Elsevier, vol. 31(C), pages 19-37.
  10. Jiwon Kang & Sangyeol Lee, 2014. "Parameter Change Test for Poisson Autoregressive Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1136-1152, December.
  11. Veraart, Almut E.D., 2019. "Modeling, simulation and inference for multivariate time series of counts using trawl processes," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 110-129.
  12. Zheng, Tingguo & Chen, Rong, 2017. "Dirichlet ARMA models for compositional time series," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 31-46.
  13. Ole E. Barndorff-Nielsen & Asger Lunde & Neil Shephard & Almut E.D. Veraart, 2014. "Integer-valued Trawl Processes: A Class of Stationary Infinitely Divisible Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 693-724, September.
  14. Volodymyr Korniichuk, 2012. "Forecasting extreme electricity spot prices," Cologne Graduate School Working Paper Series 03-14, Cologne Graduate School in Management, Economics and Social Sciences.
  15. Mamadou Lamine Diop & William Kengne, 2017. "Testing Parameter Change in General Integer-Valued Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 880-894, November.
  16. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.
  17. Yunwei Cui & Rongning Wu & Qi Zheng, 2021. "Estimation of change‐point for a class of count time series models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1277-1313, December.
  18. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos & Touche, Nassim, 2019. "Integer-valued stochastic volatility," MPRA Paper 91962, University Library of Munich, Germany, revised 04 Feb 2019.
  19. Youngmi Lee & Sangyeol Lee, 2019. "CUSUM test for general nonlinear integer-valued GARCH models: comparison study," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1033-1057, October.
  20. Xieer Dai & Michael Beenstock & Daniel Felsenstein & David Genesove & Nikita Kotsenko, 2023. "'Traffic light' theory for Covid-19 spatial mitigation policy design," Journal of Spatial Econometrics, Springer, vol. 4(1), pages 1-35, December.
  21. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
  22. Wu, Rongning, 2012. "On variance estimation in a negative binomial time series regression model," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 145-155.
  23. Cui, Yunwei & Zheng, Qi, 2017. "Conditional maximum likelihood estimation for a class of observation-driven time series models for count data," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 193-201.
  24. Wu, Rongning & Cao, Jiguo, 2011. "Blockwise empirical likelihood for time series of counts," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 661-673, March.
  25. Aknouche, Abdelhakim & Gouveia, Sonia & Scotto, Manuel, 2023. "Random multiplication versus random sum: auto-regressive-like models with integer-valued random inputs," MPRA Paper 119518, University Library of Munich, Germany, revised 18 Dec 2023.
  26. Kang, Jiwon & Lee, Sangyeol, 2014. "Minimum density power divergence estimator for Poisson autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 44-56.
  27. Tingguo Zheng & Han Xiao & Rong Chen, 2021. "Generalized Autoregressive Moving Average Models with GARCH Errors," Papers 2105.05532, arXiv.org.
  28. Tingguo Zheng & Han Xiao & Rong Chen, 2022. "Generalized autoregressive moving average models with GARCH errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 125-146, January.
  29. Maia, Gisele de Oliveira & Barreto-Souza, Wagner & Bastos, Fernando de Souza & Ombao, Hernando, 2021. "Semiparametric time series models driven by latent factor," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1463-1479.
  30. Lee, Sangyeol & Kim, Dongwon & Kim, Byungsoo, 2023. "Modeling and inference for multivariate time series of counts based on the INGARCH scheme," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
  31. Byungsoo Kim & Sangyeol Lee, 2020. "Robust estimation for general integer-valued time series models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1371-1396, December.
  32. Wagner Barreto‐Souza & Hernando Ombao, 2022. "The negative binomial process: A tractable model with composite likelihood‐based inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 568-592, June.
  33. Rongning Wu & Yunwei Cui, 2014. "A Parameter-Driven Logit Regression Model For Binary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 462-477, August.
  34. Ting Fung Ma & Fangfang Wang & Jun Zhu, 2023. "On generalized latent factor modeling and inference for high‐dimensional binomial data," Biometrics, The International Biometric Society, vol. 79(3), pages 2311-2320, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.