My bibliography
Save this item
Efficient Bayesian inference for Gaussian copula regression models
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Carsten Botts, 2013. "An accept-reject algorithm for the positive multivariate normal distribution," Computational Statistics, Springer, vol. 28(4), pages 1749-1773, August.
- Roy Cerqueti & Francesco Cesarone & Maria C. Heusch & Carlo D. Mottura, 2024. "A new family of modified Gaussian copulas for market consistent valuation of government guarantees," Review of Managerial Science, Springer, vol. 18(7), pages 1985-2005, July.
- Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
- Azam, Kazim & Pitt, Michael, 2014. "Bayesian Inference for a Semi-Parametric Copula-based Markov Chain," Economic Research Papers 270232, University of Warwick - Department of Economics.
- Michael S. Smith & Shaun P. Vahey, 2016. "Asymmetric Forecast Densities for U.S. Macroeconomic Variables from a Gaussian Copula Model of Cross-Sectional and Serial Dependence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 416-434, July.
- Anindya Bhadra & Arvind Rao & Veerabhadran Baladandayuthapani, 2018. "Inferring network structure in non†normal and mixed discrete†continuous genomic data," Biometrics, The International Biometric Society, vol. 74(1), pages 185-195, March.
- Creal, Drew D. & Tsay, Ruey S., 2015. "High dimensional dynamic stochastic copula models," Journal of Econometrics, Elsevier, vol. 189(2), pages 335-345.
- Daniels, M.J. & Pourahmadi, M., 2009. "Modeling covariance matrices via partial autocorrelations," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2352-2363, November.
- Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
- Peter X.-K. Song & Mingyao Li & Ying Yuan, 2011. "Rejoinder to “Joint Regression Analysis for Discrete Longitudinal Data” by Madsen and Fang," Biometrics, The International Biometric Society, vol. 67(3), pages 1175-1176, September.
- Peter J. Danaher & Michael S. Smith, 2011. "Modeling Multivariate Distributions Using Copulas: Applications in Marketing," Marketing Science, INFORMS, vol. 30(1), pages 4-21, 01-02.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Azam, Kazim, 2014. "Effects of Marginal Speci cations on Copula Estimation," The Warwick Economics Research Paper Series (TWERPS) 1053, University of Warwick, Department of Economics.
- Azam, Kazim, 2014. "Effects of Marginal Specifcations on Copula Estimation," Economic Research Papers 270230, University of Warwick - Department of Economics.
- Juan Wu & Xue Wang & Stephen G. Walker, 2014. "Bayesian Nonparametric Inference for a Multivariate Copula Function," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 747-763, September.
- He, Yong & Zhang, Xinsheng & Zhang, Liwen, 2018. "Variable selection for high dimensional Gaussian copula regression model: An adaptive hypothesis testing procedure," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 132-150.
- Kazim Azam & Andre Lucas, 2015. "Mixed Density based Copula Likelihood," Tinbergen Institute Discussion Papers 15-003/IV/DSF084, Tinbergen Institute.
- Smith, Michael Stanley, 2015. "Copula modelling of dependence in multivariate time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 815-833.
- Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Jean-Paul Fox & Jeremias Wenzel & Konrad Klotzke, 2021. "The Bayesian Covariance Structure Model for Testlets," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 219-243, April.
- Azam, Kazim & Pitt, Michael, 2014. "Bayesian Inference for a Semi-Parametric Copula-based Markov Chain," The Warwick Economics Research Paper Series (TWERPS) 1051, University of Warwick, Department of Economics.
- Luciana Dalla Valle, 2009. "Bayesian Copulae Distributions, with Application to Operational Risk Management," Methodology and Computing in Applied Probability, Springer, vol. 11(1), pages 95-115, March.
- Yang Ni & Veerabhadran Baladandayuthapani & Marina Vannucci & Francesco C. Stingo, 2022. "Bayesian graphical models for modern biological applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 197-225, June.
- Stöber, Jakob & Hong, Hyokyoung Grace & Czado, Claudia & Ghosh, Pulak, 2015. "Comorbidity of chronic diseases in the elderly: Patterns identified by a copula design for mixed responses," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 28-39.
- Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
- Anindya Bhadra, 2022. "Discussion to: Bayesian graphical models for modern biological applications by Y. Ni, V. Baladandayuthapani, M. Vannucci and F.C. Stingo," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 235-239, June.
- Peter J. Danaher & Michael S. Smith, 2011. "Rejoinder--Estimation Issues for Copulas Applied to Marketing Data," Marketing Science, INFORMS, vol. 30(1), pages 25-28, 01-02.
- Craiu, V. Radu & Sabeti, Avideh, 2012. "In mixed company: Bayesian inference for bivariate conditional copula models with discrete and continuous outcomes," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 106-120.
- Carta, Alessandro & Steel, Mark F.J., 2012. "Modelling multi-output stochastic frontiers using copulas," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3757-3773.
- Ruben Loaiza-Maya & Michael Stanley Smith, 2017. "Variational Bayes Estimation of Discrete-Margined Copula Models with Application to Time Series," Papers 1712.09150, arXiv.org, revised Jul 2018.
- Panagiotelis, Anastasios & Smith, Michael, 2008. "Bayesian density forecasting of intraday electricity prices using multivariate skew t distributions," International Journal of Forecasting, Elsevier, vol. 24(4), pages 710-727.
- Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
- Shirong Zhao & Jeremy Losak, 2024. "Two-tiered stochastic frontier models: a Bayesian perspective," Journal of Productivity Analysis, Springer, vol. 61(2), pages 85-106, April.
- Smith, Michael Stanley & Maneesoonthorn, Worapree, 2018. "Inversion copulas from nonlinear state space models with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 34(3), pages 389-407.
- Nadja Klein & Michael Stanley Smith & David J. Nott, 2020. "Deep Distributional Time Series Models and the Probabilistic Forecasting of Intraday Electricity Prices," Papers 2010.01844, arXiv.org, revised May 2021.
- F. Louzada & P. H. Ferreira, 2016. "Modified inference function for margins for the bivariate clayton copula-based SUN Tobit Model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 2956-2976, December.
- Burda, Martin & Prokhorov, Artem, 2014.
"Copula based factorization in Bayesian multivariate infinite mixture models,"
Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 200-213.
- Martin Burda & Artem Prokhorov, 2012. "Copula Based Factorization in Bayesian Multivariate Infinite Mixture Models," Working Papers 12012, Concordia University, Department of Economics.
- Martin Burda & Artem Prokhorov, 2013. "Copula Based Factorization in Bayesian Multivariate Infinite Mixture Models," Working Papers tecipa-473, University of Toronto, Department of Economics.
- Okhrin, Ostap & Okhrin, Yarema & Schmid, Wolfgang, 2013. "On the structure and estimation of hierarchical Archimedean copulas," Journal of Econometrics, Elsevier, vol. 173(2), pages 189-204.
- George Karabatsos, 2024. "Copula Approximate Bayesian Computation Using Distribution Random Forests," Stats, MDPI, vol. 7(3), pages 1-49, September.
- Manabu Asai & Michael McAleer & Jun Yu, 2006.
"Multivariate Stochastic Volatility,"
Microeconomics Working Papers
22058, East Asian Bureau of Economic Research.
- Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
- Smith, Michael S. & Kauermann, Göran, 2011. "Bicycle commuting in Melbourne during the 2000s energy crisis: A semiparametric analysis of intraday volumes," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1846-1862.
- Choudhary, Vidyanand & Currim, Imran & Dewan, Sanjeev & Jeliazkov, Ivan & Mintz, Ofer & Turner, John, 2017. "Evaluation Set Size and Purchase: Evidence from a Product Search Engine," Journal of Interactive Marketing, Elsevier, vol. 37(C), pages 16-31.
- L. L. Henn, 2022. "Limitations and performance of three approaches to Bayesian inference for Gaussian copula regression models of discrete data," Computational Statistics, Springer, vol. 37(2), pages 909-946, April.
- Marek Omelka & Šárka Hudecová & Natalie Neumeyer, 2021. "Maximum pseudo‐likelihood estimation based on estimated residuals in copula semiparametric models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1433-1473, December.
- Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
- Rebecca Graziani & Sergio Venturini, 2020. "A Bayesian approach to discrete multiple outcome network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-17, April.
- Nikoloulopoulos, Aristidis K., 2023. "Efficient and feasible inference for high-dimensional normal copula regression models," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
- Zichen Ma & Shannon W. Davis & Yen‐Yi Ho, 2023. "Flexible copula model for integrating correlated multi‐omics data from single‐cell experiments," Biometrics, The International Biometric Society, vol. 79(2), pages 1559-1572, June.
- Scott, James G., 2012. "Benchmarking historical corporate performance," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1795-1807.
- Amjad, Muhammad & Akbar, Muhammad & Ullah, Hamd, 2022. "A copula-based approach for creating an index of micronutrient intakes at household level in Pakistan," Economics & Human Biology, Elsevier, vol. 46(C).