IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v93y2006i3p537-554.html
   My bibliography  Save this article

Efficient Bayesian inference for Gaussian copula regression models

Author

Listed:
  • Michael Pitt
  • David Chan
  • Robert Kohn

Abstract

A Gaussian copula regression model gives a tractable way of handling a multivariate regression when some of the marginal distributions are non-Gaussian. Our paper presents a general Bayesian approach for estimating a Gaussian copula model that can handle any combination of discrete and continuous marginals, and generalises Gaussian graphical models to the Gaussian copula framework. Posterior inference is carried out using a novel and efficient simulation method. The methods in the paper are applied to simulated and real data. Copyright 2006, Oxford University Press.

Suggested Citation

  • Michael Pitt & David Chan & Robert Kohn, 2006. "Efficient Bayesian inference for Gaussian copula regression models," Biometrika, Biometrika Trust, vol. 93(3), pages 537-554, September.
  • Handle: RePEc:oup:biomet:v:93:y:2006:i:3:p:537-554
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/93.3.537
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:93:y:2006:i:3:p:537-554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.