IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v179y2023ics0167947322002341.html
   My bibliography  Save this article

Efficient and feasible inference for high-dimensional normal copula regression models

Author

Listed:
  • Nikoloulopoulos, Aristidis K.

Abstract

The composite likelihood (CL) is amongst the computational methods used for the estimation of high-dimensional multivariate normal (MVN) copula models with discrete responses. Its computational advantage, as a surrogate likelihood method, is that is based on the independence likelihood for the univariate marginal regression and non-regression parameters and pairwise likelihood for the correlation parameters. Nevertheless, the efficiency of the CL method for estimating the univariate regression and non-regression marginal parameters can be low. For a high-dimensional discrete response, weighted versions of the composite likelihood estimating equations and an iterative approach to determine good weight matrices are proposed. The general methodology is applied to the MVN copula with univariate ordinal regressions as the marginals. Efficiency calculations show that the proposed method is nearly as efficient as the maximum likelihood for fully specified MVN copula models. Illustrations include simulations and real data applications regarding longitudinal (low-dimensional) and time (high-dimensional) series ordinal response data with covariates. Our studies suggest that there is a substantial gain in efficiency via the weighted CL method.

Suggested Citation

  • Nikoloulopoulos, Aristidis K., 2023. "Efficient and feasible inference for high-dimensional normal copula regression models," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:csdana:v:179:y:2023:i:c:s0167947322002341
    DOI: 10.1016/j.csda.2022.107654
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322002341
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:taf:jnlasa:v:108:y:2013:i:502:p:656-665 is not listed on IDEAS
    2. Hausman, Jerry A & Wise, David A, 1978. "A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Econometrica, Econometric Society, vol. 46(2), pages 403-426, March.
    3. N. Rao Chaganty & Harry Joe, 2004. "Efficiency of generalized estimating equations for binary responses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 851-860, November.
    4. Li, J. & Nott, D.J. & Fan, Y. & Sisson, S.A., 2017. "Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 77-89.
    5. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
    6. Anastasios Panagiotelis & Claudia Czado & Harry Joe, 2012. "Pair Copula Constructions for Multivariate Discrete Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1063-1072, September.
    7. Aristidis K. Nikoloulopoulos & Peter G. Moffatt, 2019. "Coupling Couples With Copulas: Analysis Of Assortative Matching On Risk Attitude," Economic Inquiry, Western Economic Association International, vol. 57(1), pages 654-666, January.
    8. Michael Pitt & David Chan & Robert Kohn, 2006. "Efficient Bayesian inference for Gaussian copula regression models," Biometrika, Biometrika Trust, vol. 93(3), pages 537-554, September.
    9. L. L. Henn, 2022. "Limitations and performance of three approaches to Bayesian inference for Gaussian copula regression models of discrete data," Computational Statistics, Springer, vol. 37(2), pages 909-946, April.
    10. He, Yong & Zhang, Xinsheng & Zhang, Liwen, 2018. "Variable selection for high dimensional Gaussian copula regression model: An adaptive hypothesis testing procedure," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 132-150.
    11. Varadhan, Ravi & Gilbert, Paul, 2009. "BB: An R Package for Solving a Large System of Nonlinear Equations and for Optimizing a High-Dimensional Nonlinear Objective Function," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i04).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.
    2. L. L. Henn, 2022. "Limitations and performance of three approaches to Bayesian inference for Gaussian copula regression models of discrete data," Computational Statistics, Springer, vol. 37(2), pages 909-946, April.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. F. Louzada & P. H. Ferreira, 2016. "Modified inference function for margins for the bivariate clayton copula-based SUN Tobit Model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 2956-2976, December.
    5. Vredin Johansson, Maria & Heldt, Tobias & Johansson, Per, 2006. "The effects of attitudes and personality traits on mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 507-525, July.
    6. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    7. Ichimura, Hidehiko & Thompson, T. Scott, 1998. "Maximum likelihood estimation of a binary choice model with random coefficients of unknown distribution," Journal of Econometrics, Elsevier, vol. 86(2), pages 269-295, June.
    8. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    9. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    10. Erik Stam & Roy Thurik & Peter van der Zwan, 2010. "Entrepreneurial exit in real and imagined markets," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 19(4), pages 1109-1139, August.
    11. Højsgaard, Søren & Halekoh, Ulrich & Yan, Jun, 2005. "The R Package geepack for Generalized Estimating Equations," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 15(i02).
    12. Robert Zeithammer & Peter Lenk, 2006. "Bayesian estimation of multivariate-normal models when dimensions are absent," Quantitative Marketing and Economics (QME), Springer, vol. 4(3), pages 241-265, September.
    13. Anindya Bhadra & Arvind Rao & Veerabhadran Baladandayuthapani, 2018. "Inferring network structure in non†normal and mixed discrete†continuous genomic data," Biometrics, The International Biometric Society, vol. 74(1), pages 185-195, March.
    14. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    15. Nevo, Aviv, 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry," Econometrica, Econometric Society, vol. 69(2), pages 307-342, March.
    16. Amankwah, Akuffo & Egyir, S. Irene, 2013. "Modeling The Choice Of Irrigation Technologies Of Urban Vegetable Farmers In Accra, Ghana," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149772, Agricultural and Applied Economics Association.
    17. Haaijer, Marinus E., 1996. "Predictions in conjoint choice experiments : the x-factor probit model," Research Report 96B22, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    18. Paik, Jane & Ying, Zhiliang, 2012. "A composite likelihood approach for spatially correlated survival data," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 209-216, January.
    19. Singh, Abhilash C. & Faghih Imani, Ahmadreza & Sivakumar, Aruna & Luna Xi, Yang & Miller, Eric J., 2024. "A joint analysis of accessibility and household trip frequencies by travel mode," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    20. Yai, Tetsuo & Iwakura, Seiji & Morichi, Shigeru, 1997. "Multinomial probit with structured covariance for route choice behavior," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 195-207, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:179:y:2023:i:c:s0167947322002341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.