IDEAS home Printed from https://ideas.repec.org/r/inm/ortrsc/v40y2006i4p473-483.html
   My bibliography  Save this item

Double-Cycling Strategies for Container Ships and Their Effect on Ship Loading and Unloading Operations

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ulf Speer & Kathrin Fischer, 2017. "Scheduling of Different Automated Yard Crane Systems at Container Terminals," Transportation Science, INFORMS, vol. 51(1), pages 305-324, February.
  2. Di Luan & Mingjing Zhao & Qianru Zhao & Nan Wang, 2021. "Modelling of integrated scheduling problem of capacitated equipment systems with a multi-lane road network," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-38, June.
  3. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
  4. Yanling Chu & Xiaoju Zhang & Zhongzhen Yang, 2017. "Multiple quay cranes scheduling for double cycling in container terminals," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-19, July.
  5. Zhang, Xiaoju & Zeng, Qingcheng & Yang, Zhongzhen, 2016. "Modeling the mixed storage strategy for quay crane double cycling in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 171-187.
  6. Xiaoju Zhang & Huijuan Li & Meng Wu, 2022. "Optimization of Resource Allocation in Automated Container Terminals," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
  7. Li, Yiming & Sun, Zhuo & Hong, Soondo, 2024. "An exact algorithm for multiple-equipment integrated scheduling in an automated container terminal using a double-cycling strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
  8. Kang, Seungmo & Medina, Juan C. & Ouyang, Yanfeng, 2008. "Optimal operations of transportation fleet for unloading activities at container ports," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 970-984, December.
  9. Goodchild, A.V. & Daganzo, C.F., 2007. "Crane double cycling in container ports: Planning methods and evaluation," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 875-891, October.
  10. Chung-Yee Lee & Ming Liu & Chengbin Chu, 2015. "Optimal Algorithm for the General Quay Crane Double-Cycling Problem," Transportation Science, INFORMS, vol. 49(4), pages 957-967, November.
  11. Li Wang & Xiaoning Zhu, 2019. "Container Loading Optimization in Rail–Truck Intermodal Terminals Considering Energy Consumption," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
  12. Anne Ehleiter & Florian Jaehn, 2018. "Scheduling crossover cranes at container terminals during seaside peak times," Journal of Heuristics, Springer, vol. 24(6), pages 899-932, December.
  13. Jia, Beizhen & Tierney, Kevin & Reinhardt, Line Blander & Pahl, Julia, 2022. "Optimal dual cycling operations in roll-on roll-off terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
  14. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
  15. Feifeng Zheng & Yaxin Pang & Ming Liu & Yinfeng Xu, 2020. "Dynamic programming algorithms for the general quay crane double-cycling problem with internal-reshuffles," Journal of Combinatorial Optimization, Springer, vol. 39(3), pages 708-724, April.
  16. Zhang, Xiaoju & Zeng, Qingcheng & Sheu, Jiuh-Biing, 2019. "Modeling the productivity and stability of a terminal operation system with quay crane double cycling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 181-197.
  17. Amir Hossein Gharehgozli & Gilbert Laporte & Yugang Yu & René de Koster, 2015. "Scheduling Twin Yard Cranes in a Container Block," Transportation Science, INFORMS, vol. 49(3), pages 686-705, August.
  18. Choi, Byung-Cheon & Briskorn, Dirk & Lee, Kangbok & Leung, Joseph & Pinedo, Michael, 2008. "Allocating containers to ships with fixed departure times," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 641, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  19. Liu, Ming & Chu, Feng & Zhang, Zizhen & Chu, Chengbin, 2015. "A polynomial-time heuristic for the quay crane double-cycling problem with internal-reshuffling operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 52-74.
  20. Iris F. A. Vis & Hector J. Carlo, 2010. "Sequencing Two Cooperating Automated Stacking Cranes in a Container Terminal," Transportation Science, INFORMS, vol. 44(2), pages 169-182, May.
  21. Cheng Hong & Yufang Guo & Yuhong Wang & Tingting Li, 2023. "The Integrated Scheduling Optimization for Container Handling by Using Driverless Electric Truck in Automated Container Terminal," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
  22. Evrim Ursavas, 2017. "Crane allocation with stability considerations," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 379-401, June.
  23. Luo, Jiabin & Wu, Yue, 2015. "Modelling of dual-cycle strategy for container storage and vehicle scheduling problems at automated container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 49-64.
  24. Dusan Ku & Tiru S. Arthanari, 2016. "On double cycling for container port productivity improvement," Annals of Operations Research, Springer, vol. 243(1), pages 55-70, August.
  25. Roy, D. & de Koster, M.B.M., 2015. "Stochastic Modeling of Unloading and Loading Operations at a Container Terminal using Automated Lifting Vehicles," ERIM Report Series Research in Management ERS-2015-005-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  26. Zhang, An & Zhang, Wenshuai & Chen, Yong & Chen, Guangting & Chen, Xufeng, 2017. "Approximate the scheduling of quay cranes with non-crossing constraints," European Journal of Operational Research, Elsevier, vol. 258(3), pages 820-828.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.