IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v63y2015i5p1026-1043.html
   My bibliography  Save this item

Unbiased Estimation with Square Root Convergence for SDE Models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Devang Sinha & Siddhartha P. Chakrabarty, 2022. "Multilevel Richardson-Romberg and Importance Sampling in Derivative Pricing," Papers 2209.00821, arXiv.org.
  2. Zhengqing Zhou & Guanyang Wang & Jose Blanchet & Peter W. Glynn, 2021. "Unbiased Optimal Stopping via the MUSE," Papers 2106.02263, arXiv.org, revised Dec 2022.
  3. Li, Yuanbo & Chan, Chu Kin & Yau, Chun Yip & Ng, Wai Leong & Lam, Henry, 2024. "Burn-in selection in simulating stationary time series," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
  4. Guay, François & Schwenkler, Gustavo, 2021. "Efficient estimation and filtering for multivariate jump–diffusions," Journal of Econometrics, Elsevier, vol. 223(1), pages 251-275.
  5. Matias Quiroz & Mattias Villani & Robert Kohn & Minh-Ngoc Tran & Khue-Dung Dang, 2018. "Subsampling MCMC - an Introduction for the Survey Statistician," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 33-69, December.
  6. Ruzayqat Hamza M. & Jasra Ajay, 2020. "Unbiased estimation of the solution to Zakai’s equation," Monte Carlo Methods and Applications, De Gruyter, vol. 26(2), pages 113-129, June.
  7. Michael B. Giles & Abdul-Lateef Haji-Ali & Jonathan Spence, 2023. "Efficient Risk Estimation for the Credit Valuation Adjustment," Papers 2301.05886, arXiv.org, revised May 2024.
  8. Beskos, Alexandros & Jasra, Ajay & Law, Kody & Tempone, Raul & Zhou, Yan, 2017. "Multilevel sequential Monte Carlo samplers," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1417-1440.
  9. James Hodgson & Adam M. Johansen & Murray Pollock, 2022. "Unbiased Simulation of Rare Events in Continuous Time," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2123-2148, September.
  10. Kahalé, Nabil, 2020. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," European Journal of Operational Research, Elsevier, vol. 287(2), pages 739-748.
  11. Nabil Kahalé, 2020. "Randomized Dimension Reduction for Monte Carlo Simulations," Management Science, INFORMS, vol. 66(3), pages 1421-1439, March.
  12. Michael B. Giles & Abdul-Lateef Haji-Ali, 2019. "Sub-sampling and other considerations for efficient risk estimation in large portfolios," Papers 1912.05484, arXiv.org, revised Apr 2022.
  13. Dereich, Steffen, 2021. "General multilevel adaptations for stochastic approximation algorithms II: CLTs," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 226-260.
  14. Jikai Jin & Yiping Lu & Jose Blanchet & Lexing Ying, 2022. "Minimax Optimal Kernel Operator Learning via Multilevel Training," Papers 2209.14430, arXiv.org, revised Jul 2023.
  15. Pierre E. Jacob & John O’Leary & Yves F. Atchadé, 2020. "Unbiased Markov chain Monte Carlo methods with couplings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 543-600, July.
  16. Zhou, Zhengqing & Wang, Guanyang & Blanchet, Jose H. & Glynn, Peter W., 2023. "Unbiased Optimal Stopping via the MUSE," Stochastic Processes and their Applications, Elsevier, vol. 166(C).
  17. Andersson, Patrik & Kohatsu-Higa, Arturo & Yuasa, Tomooki, 2020. "Second order probabilistic parametrix method for unbiased simulation of stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5543-5574.
  18. Yijie Peng & Michael C. Fu & Bernd Heidergott & Henry Lam, 2020. "Maximum Likelihood Estimation by Monte Carlo Simulation: Toward Data-Driven Stochastic Modeling," Operations Research, INFORMS, vol. 68(6), pages 1896-1912, November.
  19. Ajay Jasra & Kody Law & Carina Suciu, 2020. "Advanced Multilevel Monte Carlo Methods," International Statistical Review, International Statistical Institute, vol. 88(3), pages 548-579, December.
  20. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
  21. Imry Rosenbaum & Jeremy Staum, 2017. "Multilevel Monte Carlo Metamodeling," Operations Research, INFORMS, vol. 65(4), pages 1062-1077, August.
  22. Li, Chenxu & Wu, Linjia, 2019. "Exact simulation of the Ornstein–Uhlenbeck driven stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 275(2), pages 768-779.
  23. Matti Vihola & Jouni Helske & Jordan Franks, 2020. "Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1339-1376, December.
  24. Chao Zheng & Jiangtao Pan, 2023. "Unbiased estimators for the Heston model with stochastic interest rates," Papers 2301.12072, arXiv.org, revised Aug 2023.
  25. Yasa Syed & Guanyang Wang, 2023. "Optimal randomized multilevel Monte Carlo for repeatedly nested expectations," Papers 2301.04095, arXiv.org, revised May 2023.
  26. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
  27. Goda, Takashi & Kitade, Wataru, 2023. "Constructing unbiased gradient estimators with finite variance for conditional stochastic optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 743-763.
  28. Cui, Zhenyu & Fu, Michael C. & Peng, Yijie & Zhu, Lingjiong, 2020. "Optimal unbiased estimation for expected cumulative discounted cost," European Journal of Operational Research, Elsevier, vol. 286(2), pages 604-618.
  29. Polala Arun Kumar & Ökten Giray, 2020. "Implementing de-biased estimators using mixed sequences," Monte Carlo Methods and Applications, De Gruyter, vol. 26(4), pages 293-301, December.
  30. Nabil Kahale, 2018. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," Papers 1805.09427, arXiv.org, revised Sep 2018.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.