IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v63y2015i1p212-232.html
   My bibliography  Save this item

A General Attraction Model and Sales-Based Linear Program for Network Revenue Management Under Customer Choice

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Giorgio Grani & Gianmaria Leo & Laura Palagi & Mauro Piacentini, 2016. "Revenue Management: a Market-Service decomposition approach for the Sales Based Integer Program model," DIAG Technical Reports 2016-04, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
  2. Yaping Wang & Kelly McGuire & Jeremy Terbush & Michael Towns & Chris K. Anderson, 2021. "Choice-Based Dynamic Pricing for Vacation Rentals," Interfaces, INFORMS, vol. 51(6), pages 450-462, November.
  3. Sumit Kunnumkal & Kalyan Talluri, 2019. "Choice Network Revenue Management Based on New Tractable Approximations," Transportation Science, INFORMS, vol. 53(6), pages 1591-1608, November.
  4. Shaojie Tang & Jing Yuan, 2021. "Cascade Submodular Maximization: Question Selection and Sequencing in Online Personality Quiz," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2143-2161, July.
  5. Qi Feng & J. George Shanthikumar & Mengying Xue, 2022. "Consumer Choice Models and Estimation: A Review and Extension," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 847-867, February.
  6. Fleckenstein, David & Klein, Robert & Steinhardt, Claudius, 2023. "Recent advances in integrating demand management and vehicle routing: A methodological review," European Journal of Operational Research, Elsevier, vol. 306(2), pages 499-518.
  7. Haihao Lu & Luyang Zhang, 2024. "The Power of Linear Programming in Sponsored Listings Ranking: Evidence from Field Experiments," Papers 2403.14862, arXiv.org.
  8. Laumer, Simon & Barz, Christiane, 2023. "Reductions of non-separable approximate linear programs for network revenue management," European Journal of Operational Research, Elsevier, vol. 309(1), pages 252-270.
  9. Norbert Remenyi & Xiaodong Luo, 2021. "Demand estimation from sales transaction data: practical extensions," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 20(3), pages 276-300, June.
  10. Kameng Nip & Changjun Wang & Zizhuo Wang, 2022. "Competitive and Cooperative Assortment Games under Markov Chain Choice Model," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1033-1051, March.
  11. Birolini, Sebastian & Antunes, António Pais & Cattaneo, Mattia & Malighetti, Paolo & Paleari, Stefano, 2021. "Integrated flight scheduling and fleet assignment with improved supply-demand interactions," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 162-180.
  12. Mika Sumida & Guillermo Gallego & Paat Rusmevichientong & Huseyin Topaloglu & James Davis, 2021. "Revenue-Utility Tradeoff in Assortment Optimization Under the Multinomial Logit Model with Totally Unimodular Constraints," Management Science, INFORMS, vol. 67(5), pages 2845-2869, May.
  13. Gönsch, Jochen, 2017. "A survey on risk-averse and robust revenue management," European Journal of Operational Research, Elsevier, vol. 263(2), pages 337-348.
  14. Jose Blanchet & Guillermo Gallego & Vineet Goyal, 2016. "A Markov Chain Approximation to Choice Modeling," Operations Research, INFORMS, vol. 64(4), pages 886-905, August.
  15. Keji Wei & Vikrant Vaze, 2020. "Airline Timetable Development and Fleet Assignment Incorporating Passenger Choice," Transportation Science, INFORMS, vol. 54(1), pages 139-163, January.
  16. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
  17. Amr Farahat & Joonkyum Lee, 2018. "The Multiproduct Newsvendor Problem with Customer Choice," Operations Research, INFORMS, vol. 66(1), pages 123-136, January.
  18. Tien Mai & Arunesh Sinha, 2022. "Safe Delivery of Critical Services in Areas with Volatile Security Situation via a Stackelberg Game Approach," Papers 2204.11451, arXiv.org.
  19. Sebastian Koch & Jochen Gönsch & Claudius Steinhardt, 2017. "Dynamic Programming Decomposition for Choice-Based Revenue Management with Flexible Products," Transportation Science, INFORMS, vol. 51(4), pages 1046-1062, November.
  20. Meng Qi & Ho‐Yin Mak & Zuo‐Jun Max Shen, 2020. "Data‐driven research in retail operations—A review," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 595-616, December.
  21. Ben Vinod, 2016. "Evolution of yield management in travel," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 15(3), pages 203-211, July.
  22. Jing-Sheng Song & Zhengliang Xue, 2021. "Demand Shaping Through Bundling and Product Configuration: A Dynamic Multiproduct Inventory-Pricing Model," Operations Research, INFORMS, vol. 69(2), pages 525-544, March.
  23. Robert Klein & Jochen Mackert & Michael Neugebauer & Claudius Steinhardt, 2018. "A model-based approximation of opportunity cost for dynamic pricing in attended home delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 969-996, October.
  24. Dong Liang & Richard Ratliff & Norbert Remenyi, 2017. "Robust revenue opportunity modeling with quadratic programming," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 16(6), pages 569-579, December.
  25. Avraham, Edison & Raviv, Tal, 2021. "The steady-state mobile personnel booking problem," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 266-288.
  26. den Boer, Arnoud V. & Sierag, Dirk D., 2021. "Decision-based model selection," European Journal of Operational Research, Elsevier, vol. 290(2), pages 671-686.
  27. Guang Li & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "The d -Level Nested Logit Model: Assortment and Price Optimization Problems," Operations Research, INFORMS, vol. 63(2), pages 325-342, April.
  28. Gür Ali, Özden & Amorim, Pedro, 2024. "Personalized choice model for forecasting demand under pricing scenarios with observational data—The case of attended home delivery," International Journal of Forecasting, Elsevier, vol. 40(2), pages 706-720.
  29. Sumit Kunnumkal & Kalyan Talluri, 2019. "A strong Lagrangian relaxation for general discrete-choice network revenue management," Computational Optimization and Applications, Springer, vol. 73(1), pages 275-310, May.
  30. Antoine Désir & Vineet Goyal & Danny Segev & Chun Ye, 2020. "Constrained Assortment Optimization Under the Markov Chain–based Choice Model," Management Science, INFORMS, vol. 66(2), pages 698-721, February.
  31. C. I. Chiang, 2023. "Availability control under online reviews in hospitality," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 22(5), pages 385-398, October.
  32. Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "Dynamic Assortment Optimization for Reusable Products with Random Usage Durations," Management Science, INFORMS, vol. 66(7), pages 2820-2844, July.
  33. Strauss, Arne & Gülpınar, Nalan & Zheng, Yijun, 2021. "Dynamic pricing of flexible time slots for attended home delivery," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1022-1041.
  34. Kameng Nip & Zhenbo Wang & Zizhuo Wang, 2021. "Assortment Optimization under a Single Transition Choice Model," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2122-2142, July.
  35. Nan Liu & Yuhang Ma & Huseyin Topaloglu, 2020. "Assortment Optimization Under the Multinomial Logit Model with Sequential Offerings," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 835-853, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.