IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v34y1986i2p250-256.html
   My bibliography  Save this item

A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Amitai Armon & Iftah Gamzu & Danny Segev, 2014. "Mobile facility location: combinatorial filtering via weighted occupancy," Journal of Combinatorial Optimization, Springer, vol. 28(2), pages 358-375, August.
  2. Ilan Adler & Martin Bullinger & Vijay V. Vazirani, 2024. "A Generalization of von Neumann's Reduction from the Assignment Problem to Zero-Sum Games," Papers 2410.10767, arXiv.org.
  3. D. V. Gribanov & D. S. Malyshev & P. M. Pardalos & S. I. Veselov, 2018. "FPT-algorithms for some problems related to integer programming," Journal of Combinatorial Optimization, Springer, vol. 35(4), pages 1128-1146, May.
  4. M. Cai & X. Yang & Y. Li, 2000. "Inverse Problems of Submodular Functions on Digraphs," Journal of Optimization Theory and Applications, Springer, vol. 104(3), pages 559-575, March.
  5. Orlin, James B., 1953-., 1988. "A faster strongly polynomial minimum cost flow algorithm," Working papers 2042-88., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  6. Balaji Gopalakrishnan & Seunghyun Kong & Earl Barnes & Ellis Johnson & Joel Sokol, 2011. "A least-squares minimum-cost network flow algorithm," Annals of Operations Research, Springer, vol. 186(1), pages 119-140, June.
  7. Sonia Puri & M. Puri, 2006. "Max-min sum minimization transportation problem," Annals of Operations Research, Springer, vol. 143(1), pages 265-275, March.
  8. Orlin, James B., 1953-., 1985. "A dual version of Tardos's algorithm for linear programming," Working papers 1686-85., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  9. Huang, Siming & Liu, Zhenhong, 1999. "On the inverse problem of linear programming and its application to minimum weight perfect k-matching," European Journal of Operational Research, Elsevier, vol. 112(2), pages 421-426, January.
  10. Ravindra K. Ahuja & James B. Orlin & Giovanni M. Sechi & Paola Zuddas, 1999. "Algorithms for the Simple Equal Flow Problem," Management Science, INFORMS, vol. 45(10), pages 1440-1455, October.
  11. Cai Mao-Cheng, 1999. "Inverse Problems of Matroid Intersection," Journal of Combinatorial Optimization, Springer, vol. 3(4), pages 465-474, December.
  12. Guy Even & Alexander Zadorojniy, 2012. "Strong polynomiality of the Gass-Saaty shadow-vertex pivoting rule for controlled random walks," Annals of Operations Research, Springer, vol. 201(1), pages 159-167, December.
  13. Yuriy Zinchenko & Alexandru V. Asimit, 2023. "Modeling Risk for CVaR-Based Decisions in Risk Aggregation," JRFM, MDPI, vol. 16(5), pages 1-22, May.
  14. Dipti Dubey & S. K. Neogy, 2020. "On solving a non-convex quadratic programming problem involving resistance distances in graphs," Annals of Operations Research, Springer, vol. 287(2), pages 643-651, April.
  15. Dorit Hochbaum, 2007. "Complexity and algorithms for nonlinear optimization problems," Annals of Operations Research, Springer, vol. 153(1), pages 257-296, September.
  16. Tu, Ta Van, 2000. "Optimization over the efficient set of a parametric multiple objective linear programming problem," European Journal of Operational Research, Elsevier, vol. 122(3), pages 570-583, May.
  17. Prabhjot Kaur & Anuj Sharma & Vanita Verma & Kalpana Dahiya, 2022. "An alternate approach to solve two-level hierarchical time minimization transportation problem," 4OR, Springer, vol. 20(1), pages 23-61, March.
  18. László A. Végh, 2017. "A Strongly Polynomial Algorithm for Generalized Flow Maximization," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 179-211, January.
  19. Steffen Borgwardt, 2022. "An LP-based, strongly-polynomial 2-approximation algorithm for sparse Wasserstein barycenters," Operational Research, Springer, vol. 22(2), pages 1511-1551, April.
  20. Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.
  21. R. Chandrasekaran & Young U. Ryu & Varghese S. Jacob & Sungchul Hong, 2005. "Isotonic Separation," INFORMS Journal on Computing, INFORMS, vol. 17(4), pages 462-474, November.
  22. Paulo Oliveira, 2014. "A strongly polynomial-time algorithm for the strict homogeneous linear-inequality feasibility problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(3), pages 267-284, December.
  23. Ting Pong & Hao Sun & Ningchuan Wang & Henry Wolkowicz, 2016. "Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 333-364, March.
  24. Mao-Cheng Cai & Xiaoguang Yang & Yanjun Li, 1999. "Inverse Polymatroidal Flow Problem," Journal of Combinatorial Optimization, Springer, vol. 3(1), pages 115-126, July.
  25. K L Poh & K W Choo & C G Wong, 2005. "A heuristic approach to the multi-period multi-commodity transportation problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(6), pages 708-718, June.
  26. Orlin, James B., 1953-, 1995. "A polynomial time primal network simplex algorithm for minimum cost flows," Working papers 3834-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  27. Cai Mao-Cheng & Yanjun Li, 1997. "Inverse Matroid Intersection Problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 45(2), pages 235-243, June.
  28. Puerto, Justo & Tamir, Arie & Perea, Federico, 2011. "A cooperative location game based on the 1-center location problem," European Journal of Operational Research, Elsevier, vol. 214(2), pages 317-330, October.
  29. Steffen Borgwardt & Stephan Patterson, 2021. "On the computational complexity of finding a sparse Wasserstein barycenter," Journal of Combinatorial Optimization, Springer, vol. 41(3), pages 736-761, April.
  30. Meer, K. & Weber, G. W., 2002. "Some aspects of studying an optimization or decision problem in different computational models," European Journal of Operational Research, Elsevier, vol. 143(2), pages 406-418, December.
  31. Amitabh Basu & Jesús A. De Loera & Mark Junod, 2014. "On Chubanov's Method for Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 336-350, May.
  32. R. B. Bapat & S. K. Neogy, 2016. "On a quadratic programming problem involving distances in trees," Annals of Operations Research, Springer, vol. 243(1), pages 365-373, August.
  33. Hiroshi Hirai, 2014. "The Maximum Multiflow Problems with Bounded Fractionality," Mathematics of Operations Research, INFORMS, vol. 39(1), pages 60-104, February.
  34. Hochbaum, Dorit S., 2002. "Solving integer programs over monotone inequalities in three variables: A framework for half integrality and good approximations," European Journal of Operational Research, Elsevier, vol. 140(2), pages 291-321, July.
  35. Jianzhong Zhang & Mao Cai, 1998. "Inverse problem of minimum cuts," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 47(1), pages 51-58, February.
  36. Agnes Cseh & Jannik Matuschke, 2018. "New and simple algorithms for stable flow problems," CERS-IE WORKING PAPERS 1817, Institute of Economics, Centre for Economic and Regional Studies.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.