IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v3y1999i1d10.1023_a1009877408258.html
   My bibliography  Save this article

Inverse Polymatroidal Flow Problem

Author

Listed:
  • Mao-Cheng Cai

    (Academia Sinica)

  • Xiaoguang Yang

    (Academia Sinica)

  • Yanjun Li

    (Academia Sinica)

Abstract

Let D = (V, A) be a directed graph, for each vertex v ∈ V, let Δ+(v) and Δ− (v) denote the sets of arcs leaving and entering v, $${\mathcal{F}}_v^ +$$ and $${\mathcal{F}}_v^ -$$ be intersecting families on Δ+(v) and Δ−(v), respectively, and $$\rho _v^+ :{\mathcal{F}}_v^+ \to {\mathcal{R}}_+$$ and $$\rho_v^- :{\mathcal{F}}_v^+ \to {\mathcal{R}}_+$$ be submodular functions on intersecting pairs. A flow f : A → R is feasible if $$\begin{gathered} f(\Delta ^ + (v)) = f(\Delta ^ - (v)){\text{ }}\forall v \in V,\hfill \\ f(S) \leqslant \rho _v^ + (S){\text{ }}\forall S \in \mathcal{F}_v^+ ,v \in V, \hfill \\ f(S) \leqslant \rho _v^ - (S){\text{ }}\forall S \in \mathcal{F}_v^- ,v \in V, \hfill \\ f(e) \geqslant 0{\text{ }}\forall e \in A, \hfill \\\end{gathered}$$ Given a cost function c on A, the minimum cost polymatroidal flow problem is to find a feasible flow f with minimum cost σ{c(e)f(e)ve σ A}, it is a significant generalization of many combinatorial optimization problems. Given a feasible flow f*, cost and restriction functions on A, the inverse polymatroidal flow problem is to modify c, optimally and with bounds, such that f* becomes a minimum cost polymatroidal flow under the modified cost. It is shown in this paper that the inverse problem can be formulated as a combinatorial linear program and can be further transformed into a minimum cost circulation problem. Hence it can be solved efficiently by strongly polynomial combinatorial algorithms. We also give a necessary and sufficient condition for the feasibility of the inverse problem.

Suggested Citation

  • Mao-Cheng Cai & Xiaoguang Yang & Yanjun Li, 1999. "Inverse Polymatroidal Flow Problem," Journal of Combinatorial Optimization, Springer, vol. 3(1), pages 115-126, July.
  • Handle: RePEc:spr:jcomop:v:3:y:1999:i:1:d:10.1023_a:1009877408258
    DOI: 10.1023/A:1009877408258
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1009877408258
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1009877408258?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Easa, Said M., 1985. "Shortest route algorithm with movement prohibitions," Transportation Research Part B: Methodological, Elsevier, vol. 19(3), pages 197-208, June.
    2. Éva Tardos, 1986. "A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs," Operations Research, INFORMS, vol. 34(2), pages 250-256, April.
    3. Cai Mao-Cheng & Yanjun Li, 1997. "Inverse Matroid Intersection Problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 45(2), pages 235-243, June.
    4. EDMONDS, Jack & GILES, Rick, 1977. "A min-max relation for submodular functions on graphs," LIDAM Reprints CORE 301, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.
    2. M. Cai & X. Yang & Y. Li, 2000. "Inverse Problems of Submodular Functions on Digraphs," Journal of Optimization Theory and Applications, Springer, vol. 104(3), pages 559-575, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.
    2. M. Cai & X. Yang & Y. Li, 2000. "Inverse Problems of Submodular Functions on Digraphs," Journal of Optimization Theory and Applications, Springer, vol. 104(3), pages 559-575, March.
    3. Jianzhong Zhang & Mao Cai, 1998. "Inverse problem of minimum cuts," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 47(1), pages 51-58, February.
    4. András Frank, 2005. "On Kuhn's Hungarian Method—A tribute from Hungary," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 2-5, February.
    5. Ting Pong & Hao Sun & Ningchuan Wang & Henry Wolkowicz, 2016. "Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 333-364, March.
    6. R. B. Bapat & S. K. Neogy, 2016. "On a quadratic programming problem involving distances in trees," Annals of Operations Research, Springer, vol. 243(1), pages 365-373, August.
    7. Amitai Armon & Iftah Gamzu & Danny Segev, 2014. "Mobile facility location: combinatorial filtering via weighted occupancy," Journal of Combinatorial Optimization, Springer, vol. 28(2), pages 358-375, August.
    8. Balaji Gopalakrishnan & Seunghyun Kong & Earl Barnes & Ellis Johnson & Joel Sokol, 2011. "A least-squares minimum-cost network flow algorithm," Annals of Operations Research, Springer, vol. 186(1), pages 119-140, June.
    9. Xujin Chen & Guoli Ding & Xiaodong Hu & Wenan Zang, 2006. "A Min-Max Relation on Packing Feedback Vertex Sets," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 777-788, November.
    10. Kazuo Murota, 2016. "Discrete convex analysis: A tool for economics and game theory," The Journal of Mechanism and Institution Design, Society for the Promotion of Mechanism and Institution Design, University of York, vol. 1(1), pages 151-273, December.
    11. Amitabh Basu & Jesús A. De Loera & Mark Junod, 2014. "On Chubanov's Method for Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 336-350, May.
    12. Alexandre Skoda, 2019. "Convexity of graph-restricted games induced by minimum partitions," Post-Print halshs-01617023, HAL.
    13. László A. Végh, 2017. "A Strongly Polynomial Algorithm for Generalized Flow Maximization," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 179-211, January.
    14. Meijia Han & Wenxing Zhu, 2023. "Nonnegative partial s-goodness for the equivalence of a 0-1 linear program to weighted linear programming," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-37, July.
    15. Nguyen, Kien Trung & Hung, Nguyen Thanh, 2021. "The minmax regret inverse maximum weight problem," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    16. Ilan Adler & Martin Bullinger & Vijay V. Vazirani, 2024. "A Generalization of von Neumann's Reduction from the Assignment Problem to Zero-Sum Games," Papers 2410.10767, arXiv.org.
    17. D. V. Gribanov & D. S. Malyshev & P. M. Pardalos & S. I. Veselov, 2018. "FPT-algorithms for some problems related to integer programming," Journal of Combinatorial Optimization, Springer, vol. 35(4), pages 1128-1146, May.
    18. Zhenhong Liu & Jianzhong Zhang, 2003. "On Inverse Problems of Optimum Perfect Matching," Journal of Combinatorial Optimization, Springer, vol. 7(3), pages 215-228, September.
    19. Prabhjot Kaur & Anuj Sharma & Vanita Verma & Kalpana Dahiya, 2022. "An alternate approach to solve two-level hierarchical time minimization transportation problem," 4OR, Springer, vol. 20(1), pages 23-61, March.
    20. Paulo Oliveira, 2014. "A strongly polynomial-time algorithm for the strict homogeneous linear-inequality feasibility problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(3), pages 267-284, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:3:y:1999:i:1:d:10.1023_a:1009877408258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.