A dual version of Tardos's algorithm for linear programming
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Éva Tardos, 1986. "A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs," Operations Research, INFORMS, vol. 34(2), pages 250-256, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ting Pong & Hao Sun & Ningchuan Wang & Henry Wolkowicz, 2016. "Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 333-364, March.
- R. B. Bapat & S. K. Neogy, 2016. "On a quadratic programming problem involving distances in trees," Annals of Operations Research, Springer, vol. 243(1), pages 365-373, August.
- Amitai Armon & Iftah Gamzu & Danny Segev, 2014. "Mobile facility location: combinatorial filtering via weighted occupancy," Journal of Combinatorial Optimization, Springer, vol. 28(2), pages 358-375, August.
- Balaji Gopalakrishnan & Seunghyun Kong & Earl Barnes & Ellis Johnson & Joel Sokol, 2011. "A least-squares minimum-cost network flow algorithm," Annals of Operations Research, Springer, vol. 186(1), pages 119-140, June.
- Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.
- Amitabh Basu & Jesús A. De Loera & Mark Junod, 2014. "On Chubanov's Method for Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 336-350, May.
- László A. Végh, 2017. "A Strongly Polynomial Algorithm for Generalized Flow Maximization," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 179-211, January.
- Mao-Cheng Cai & Xiaoguang Yang & Yanjun Li, 1999. "Inverse Polymatroidal Flow Problem," Journal of Combinatorial Optimization, Springer, vol. 3(1), pages 115-126, July.
- Ilan Adler & Martin Bullinger & Vijay V. Vazirani, 2024. "A Generalization of von Neumann's Reduction from the Assignment Problem to Zero-Sum Games," Papers 2410.10767, arXiv.org.
- D. V. Gribanov & D. S. Malyshev & P. M. Pardalos & S. I. Veselov, 2018. "FPT-algorithms for some problems related to integer programming," Journal of Combinatorial Optimization, Springer, vol. 35(4), pages 1128-1146, May.
- M. Cai & X. Yang & Y. Li, 2000. "Inverse Problems of Submodular Functions on Digraphs," Journal of Optimization Theory and Applications, Springer, vol. 104(3), pages 559-575, March.
- Prabhjot Kaur & Anuj Sharma & Vanita Verma & Kalpana Dahiya, 2022. "An alternate approach to solve two-level hierarchical time minimization transportation problem," 4OR, Springer, vol. 20(1), pages 23-61, March.
- Paulo Oliveira, 2014. "A strongly polynomial-time algorithm for the strict homogeneous linear-inequality feasibility problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(3), pages 267-284, December.
- Steffen Borgwardt & Stephan Patterson, 2021. "On the computational complexity of finding a sparse Wasserstein barycenter," Journal of Combinatorial Optimization, Springer, vol. 41(3), pages 736-761, April.
- Orlin, James B., 1953-., 1988. "A faster strongly polynomial minimum cost flow algorithm," Working papers 2042-88., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Cai Mao-Cheng, 1999. "Inverse Problems of Matroid Intersection," Journal of Combinatorial Optimization, Springer, vol. 3(4), pages 465-474, December.
- Puerto, Justo & Tamir, Arie & Perea, Federico, 2011. "A cooperative location game based on the 1-center location problem," European Journal of Operational Research, Elsevier, vol. 214(2), pages 317-330, October.
- Orlin, James B., 1953-, 1995. "A polynomial time primal network simplex algorithm for minimum cost flows," Working papers 3834-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Jianzhong Zhang & Mao Cai, 1998. "Inverse problem of minimum cuts," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 47(1), pages 51-58, February.
- Dipti Dubey & S. K. Neogy, 2020. "On solving a non-convex quadratic programming problem involving resistance distances in graphs," Annals of Operations Research, Springer, vol. 287(2), pages 643-651, April.
More about this item
Keywords
HD28 .M414 no.1686-; 85;JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mit:sloanp:2115. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: None (email available below). General contact details of provider: https://edirc.repec.org/data/ssmitus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.