IDEAS home Printed from https://ideas.repec.org/r/inm/ormnsc/v16y1970i5p357-373.html
   My bibliography  Save this item

Cash Flows in Networks

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Nalini Dayanand & Rema Padman, 2001. "Project Contracts and Payment Schedules: The Client's Problem," Management Science, INFORMS, vol. 47(12), pages 1654-1667, December.
  2. Leyman, Pieter & Vanhoucke, Mario, 2017. "Capital- and resource-constrained project scheduling with net present value optimization," European Journal of Operational Research, Elsevier, vol. 256(3), pages 757-776.
  3. Etgar, Ran & Gelbard, Roy & Cohen, Yuval, 2017. "Optimizing version release dates of research and development long-term processes," European Journal of Operational Research, Elsevier, vol. 259(2), pages 642-653.
  4. Ulusoy, Gunduz & Cebelli, Serkan, 2000. "An equitable approach to the payment scheduling problem in project management," European Journal of Operational Research, Elsevier, vol. 127(2), pages 262-278, December.
  5. Mario Vanhoucke & Erik Demeulemeester & Willy Herroelen, 2001. "On Maximizing the Net Present Value of a Project Under Renewable Resource Constraints," Management Science, INFORMS, vol. 47(8), pages 1113-1121, August.
  6. Ashraf Elazouni, 2009. "Heuristic method for multi-project finance-based scheduling," Construction Management and Economics, Taylor & Francis Journals, vol. 27(2), pages 199-211.
  7. Peymankar, Mahboobeh & Davari, Morteza & Ranjbar, Mohammad, 2021. "Maximizing the expected net present value in a project with uncertain cash flows," European Journal of Operational Research, Elsevier, vol. 294(2), pages 442-452.
  8. He, Zhengwen & Liu, Renjing & Jia, Tao, 2012. "Metaheuristics for multi-mode capital-constrained project payment scheduling," European Journal of Operational Research, Elsevier, vol. 223(3), pages 605-613.
  9. He, Zhengwen & Xu, Yu, 2008. "Multi-mode project payment scheduling problems with bonus-penalty structure," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1191-1207, September.
  10. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
  11. Alessandro Hill & Andrea J. Brickey & Italo Cipriano & Marcos Goycoolea & Alexandra Newman, 2022. "Optimization Strategies for Resource-Constrained Project Scheduling Problems in Underground Mining," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3042-3058, November.
  12. Kolisch, Rainer & Padman, Rema, 1997. "An integrated survey of project scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 463, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  13. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
  14. Joseph G. Szmerekovsky & George L. Vairaktarakis, 2006. "Maximizing project cash availability," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(4), pages 272-284, June.
  15. Zhengwen He & Nengmin Wang & Pengxiang Li, 2014. "Simulated annealing for financing cost distribution based project payment scheduling from a joint perspective," Annals of Operations Research, Springer, vol. 213(1), pages 203-220, February.
  16. Hermans, Ben & Leus, Roel & Looy, Bart Van, 2023. "Deciding on scheduling, secrecy, and patenting during the new product development process: The relevance of project planning models," Omega, Elsevier, vol. 116(C).
  17. He, Zhengwen & Wang, Nengmin & Jia, Tao & Xu, Yu, 2009. "Simulated annealing and tabu search for multi-mode project payment scheduling," European Journal of Operational Research, Elsevier, vol. 198(3), pages 688-696, November.
  18. Etgar, Ran & Shtub, Avraham & LeBlanc, Larry J., 1997. "Scheduling projects to maximize net present value -- the case of time-dependent, contingent cash flows," European Journal of Operational Research, Elsevier, vol. 96(1), pages 90-96, January.
  19. M. Vanhoucke, 2006. "An efficient hybrid search algorithm for various optimization problems," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/365, Ghent University, Faculty of Economics and Business Administration.
  20. Creemers, Stefan, 2018. "Maximizing the expected net present value of a project with phase-type distributed activity durations: An efficient globally optimal solution procedure," European Journal of Operational Research, Elsevier, vol. 267(1), pages 16-22.
  21. Wiesemann, Wolfram & Kuhn, Daniel & Rustem, Berç, 2010. "Maximizing the net present value of a project under uncertainty," European Journal of Operational Research, Elsevier, vol. 202(2), pages 356-367, April.
  22. Yuvraj Gajpal & Ashraf Elazouni, 2015. "Enhanced heuristic for finance-based scheduling of construction projects," Construction Management and Economics, Taylor & Francis Journals, vol. 33(7), pages 531-553, July.
  23. Neumann, K. & Schwindt, C. & Zimmermann, J., 2003. "Order-based neighborhoods for project scheduling with nonregular objective functions," European Journal of Operational Research, Elsevier, vol. 149(2), pages 325-343, September.
  24. Sobel, Matthew J. & Szmerekovsky, Joseph G. & Tilson, Vera, 2009. "Scheduling projects with stochastic activity duration to maximize expected net present value," European Journal of Operational Research, Elsevier, vol. 198(3), pages 697-705, November.
  25. Herroelen, Willy S. & Van Dommelen, Patrick & Demeulemeester, Erik L., 1997. "Project network models with discounted cash flows a guided tour through recent developments," European Journal of Operational Research, Elsevier, vol. 100(1), pages 97-121, July.
  26. Aidin Delgoshaei & Timon Rabczuk & Ahad Ali & Mohd Khairol Anuar Ariffin, 2017. "An applicable method for modifying over-allocated multi-mode resource constraint schedules in the presence of preemptive resources," Annals of Operations Research, Springer, vol. 259(1), pages 85-117, December.
  27. M. Vanhoucke, 2007. "A genetic algorithm to investigate the trade-off between project lead time and net present value," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/456, Ghent University, Faculty of Economics and Business Administration.
  28. Kolisch, Rainer, 1996. "Investitionsplanung in Netzwerken," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 423, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  29. Vanhoucke, Mario & Demeulemeester, Erik & Herroelen, Willy, 2003. "Progress payments in project scheduling problems," European Journal of Operational Research, Elsevier, vol. 148(3), pages 604-620, August.
  30. Yangyang Liang & Nanfang Cui & Tian Wang & Erik Demeulemeester, 2019. "Robust resource-constrained max-NPV project scheduling with stochastic activity duration," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 219-254, March.
  31. Kolisch, Rainer & Sprecher, Arno & Drexl, Andreas, 1992. "Characterization and generation of a general class of resource-constrained project scheduling problems: Easy and hard instances," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 301, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  32. Bogumiła Krzeszowska, 2013. "Three step procedure for a multiple criteria problem of project portfolio scheduling," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 23(4), pages 55-74.
  33. Mika, Marek & Waligora, Grzegorz & Weglarz, Jan, 2005. "Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models," European Journal of Operational Research, Elsevier, vol. 164(3), pages 639-668, August.
  34. Yang, Kum Khiong & Tay, Lee Choo & Sum, Chee Chuong, 1995. "A comparison of stochastic scheduling rules for maximizing project net present value," European Journal of Operational Research, Elsevier, vol. 85(2), pages 327-339, September.
  35. Neumann, K. & Zimmermann, J., 2000. "Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints," European Journal of Operational Research, Elsevier, vol. 127(2), pages 425-443, December.
  36. Joseph G. Szmerekovsky, 2005. "The Impact of Contractor Behavior on the Client's Payment-Scheduling Problem," Management Science, INFORMS, vol. 51(4), pages 629-640, April.
  37. Nursel Kavlak & Gündüz Ulusoy & Funda Sivrikaya Şerifoğlu & Ş. İlker Birbil, 2009. "Client‐contractor bargaining on net present value in project scheduling with limited resources," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(2), pages 93-112, March.
  38. Wenhui Zhao & Nicholas G. Hall & Zhixin Liu, 2020. "Project Evaluation and Selection with Task Failures," Production and Operations Management, Production and Operations Management Society, vol. 29(2), pages 428-446, February.
  39. Dominik Kramer, 2009. "Zur optimalen Abfolge von Investitionsprojekten," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 20(1), pages 89-103, May.
  40. De Reyck, Bert & Herroelen, willy, 1998. "A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations," European Journal of Operational Research, Elsevier, vol. 111(1), pages 152-174, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.