IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v189y2008i3p1191-1207.html
   My bibliography  Save this article

Multi-mode project payment scheduling problems with bonus-penalty structure

Author

Listed:
  • He, Zhengwen
  • Xu, Yu

Abstract

This paper involves the multi-mode project payment scheduling problem with bonus-penalty structure where activities can be performed with several modes and a bonus-penalty structure exists at the deadline of the project. In the problem the decisions on when to schedule events and payments, the magnitude of each payment, and the performing mode of each activity need to be optimized. A two-module simulated annealing heuristic is proposed to solve the mixed integer non-linear programming models for the contractor and the client, and a satisfactory solution, which consists of payment event set, event schedule, and payment amount set, may be found through iterations between the heuristic's two modules. The profits of the two parties of the contract are changed significantly by the bonus-penalty structure and the structure may be considered as a coordination mechanism essentially, which may enhance the flexibility of payment scheduling and be helpful for the two parties to get more profits from the project. Through solving and analyzing an instance the insight that the bonus-penalty structure may advance the project completion effectively and improve the profits of the two parties in the meantime can be obtained.

Suggested Citation

  • He, Zhengwen & Xu, Yu, 2008. "Multi-mode project payment scheduling problems with bonus-penalty structure," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1191-1207, September.
  • Handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:1191-1207
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00593-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. H. Russell, 1970. "Cash Flows in Networks," Management Science, INFORMS, vol. 16(5), pages 357-373, January.
    2. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    3. Nalini Dayanand & Rema Padman, 2001. "Project Contracts and Payment Schedules: The Client's Problem," Management Science, INFORMS, vol. 47(12), pages 1654-1667, December.
    4. Elmaghraby, Salah E. & Herroelen, Willy S., 1990. "The scheduling of activities to maximize the net present value of projects," European Journal of Operational Research, Elsevier, vol. 49(1), pages 35-49, November.
    5. Nalini Dayanand & Rema Padman, 2001. "A Two Stage Search Heuristic for Scheduling Payments in Projects," Annals of Operations Research, Springer, vol. 102(1), pages 197-220, February.
    6. Vanhoucke, Mario & Demeulemeester, Erik & Herroelen, Willy, 2003. "Progress payments in project scheduling problems," European Journal of Operational Research, Elsevier, vol. 148(3), pages 604-620, August.
    7. Mika, Marek & Waligora, Grzegorz & Weglarz, Jan, 2005. "Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models," European Journal of Operational Research, Elsevier, vol. 164(3), pages 639-668, August.
    8. A. Kimms, 2001. "Maximizing the Net Present Value of a Project Under Resource Constraints Using a Lagrangian Relaxation Based Heuristic with Tight Upper Bounds," Annals of Operations Research, Springer, vol. 102(1), pages 221-236, February.
    9. Herroelen, Willy S. & Van Dommelen, Patrick & Demeulemeester, Erik L., 1997. "Project network models with discounted cash flows a guided tour through recent developments," European Journal of Operational Research, Elsevier, vol. 100(1), pages 97-121, July.
    10. Ulusoy, Gunduz & Cebelli, Serkan, 2000. "An equitable approach to the payment scheduling problem in project management," European Journal of Operational Research, Elsevier, vol. 127(2), pages 262-278, December.
    11. Mario Vanhoucke & Erik Demeulemeester & Willy Herroelen, 2001. "On Maximizing the Net Present Value of a Project Under Renewable Resource Constraints," Management Science, INFORMS, vol. 47(8), pages 1113-1121, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Etgar, Ran & Gelbard, Roy & Cohen, Yuval, 2017. "Optimizing version release dates of research and development long-term processes," European Journal of Operational Research, Elsevier, vol. 259(2), pages 642-653.
    2. Dayal Madhukar & Verma, Sanjay, 2015. "Multi-processor Exact Procedures for Regular Measures of the Multi-mode RCPSP," IIMA Working Papers WP2015-03-25, Indian Institute of Management Ahmedabad, Research and Publication Department.
    3. Nima Zoraghi & Aria Shahsavar & Babak Abbasi & Vincent Peteghem, 2017. "Multi-mode resource-constrained project scheduling problem with material ordering under bonus–penalty policies," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 49-79, April.
    4. Leyman, Pieter & Vanhoucke, Mario, 2017. "Capital- and resource-constrained project scheduling with net present value optimization," European Journal of Operational Research, Elsevier, vol. 256(3), pages 757-776.
    5. He, Zhengwen & Liu, Renjing & Jia, Tao, 2012. "Metaheuristics for multi-mode capital-constrained project payment scheduling," European Journal of Operational Research, Elsevier, vol. 223(3), pages 605-613.
    6. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    7. Zhengwen He & Nengmin Wang & Pengxiang Li, 2014. "Simulated annealing for financing cost distribution based project payment scheduling from a joint perspective," Annals of Operations Research, Springer, vol. 213(1), pages 203-220, February.
    8. He, Zhengwen & Wang, Nengmin & Jia, Tao & Xu, Yu, 2009. "Simulated annealing and tabu search for multi-mode project payment scheduling," European Journal of Operational Research, Elsevier, vol. 198(3), pages 688-696, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Zhengwen & Wang, Nengmin & Jia, Tao & Xu, Yu, 2009. "Simulated annealing and tabu search for multi-mode project payment scheduling," European Journal of Operational Research, Elsevier, vol. 198(3), pages 688-696, November.
    2. Mika, Marek & Waligora, Grzegorz & Weglarz, Jan, 2005. "Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models," European Journal of Operational Research, Elsevier, vol. 164(3), pages 639-668, August.
    3. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    4. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
    5. Nursel Kavlak & Gündüz Ulusoy & Funda Sivrikaya Şerifoğlu & Ş. İlker Birbil, 2009. "Client‐contractor bargaining on net present value in project scheduling with limited resources," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(2), pages 93-112, March.
    6. Zhengwen He & Nengmin Wang & Pengxiang Li, 2014. "Simulated annealing for financing cost distribution based project payment scheduling from a joint perspective," Annals of Operations Research, Springer, vol. 213(1), pages 203-220, February.
    7. He, Zhengwen & Liu, Renjing & Jia, Tao, 2012. "Metaheuristics for multi-mode capital-constrained project payment scheduling," European Journal of Operational Research, Elsevier, vol. 223(3), pages 605-613.
    8. Leyman, Pieter & Vanhoucke, Mario, 2017. "Capital- and resource-constrained project scheduling with net present value optimization," European Journal of Operational Research, Elsevier, vol. 256(3), pages 757-776.
    9. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    10. M. Vanhoucke, 2006. "An efficient hybrid search algorithm for various optimization problems," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/365, Ghent University, Faculty of Economics and Business Administration.
    11. Wenhui Zhao & Nicholas G. Hall & Zhixin Liu, 2020. "Project Evaluation and Selection with Task Failures," Production and Operations Management, Production and Operations Management Society, vol. 29(2), pages 428-446, February.
    12. Etgar, Ran & Gelbard, Roy & Cohen, Yuval, 2017. "Optimizing version release dates of research and development long-term processes," European Journal of Operational Research, Elsevier, vol. 259(2), pages 642-653.
    13. Joseph G. Szmerekovsky, 2005. "The Impact of Contractor Behavior on the Client's Payment-Scheduling Problem," Management Science, INFORMS, vol. 51(4), pages 629-640, April.
    14. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustín Barrios-Sarmiento, 2022. "An adaptative bacterial foraging optimization algorithm for solving the MRCPSP with discounted cash flows," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 221-248, July.
    15. Zhang, Jingwen & Elmaghraby, Salah E., 2014. "The relevance of the “alphorn of uncertainty” to the financial management of projects under uncertainty," European Journal of Operational Research, Elsevier, vol. 238(1), pages 65-76.
    16. Joseph G. Szmerekovsky & George L. Vairaktarakis, 2006. "Maximizing project cash availability," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(4), pages 272-284, June.
    17. Wiesemann, Wolfram & Kuhn, Daniel & Rustem, Berç, 2010. "Maximizing the net present value of a project under uncertainty," European Journal of Operational Research, Elsevier, vol. 202(2), pages 356-367, April.
    18. Thomas Selle & Jürgen Zimmermann, 2003. "A bidirectional heuristic for maximizing the net present value of large‐scale projects subject to limited resources," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(2), pages 130-148, March.
    19. De Reyck, Bert & Herroelen, willy, 1998. "A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations," European Journal of Operational Research, Elsevier, vol. 111(1), pages 152-174, November.
    20. Creemers, Stefan, 2018. "Maximizing the expected net present value of a project with phase-type distributed activity durations: An efficient globally optimal solution procedure," European Journal of Operational Research, Elsevier, vol. 267(1), pages 16-22.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:1191-1207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.