IDEAS home Printed from https://ideas.repec.org/r/fip/fedcwp/1206.html
   My bibliography  Save this item

Common drifting volatility in large Bayesian VARs

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
  2. Mike Tsionas & Marwan Izzeldin & Lorenzo Trapani, 2019. "Bayesian estimation of large dimensional time varying VARs using copulas," Papers 1912.12527, arXiv.org.
  3. Dovern, Jonas & Feldkircher, Martin & Huber, Florian, 2016. "Does joint modelling of the world economy pay off? Evaluating global forecasts from a Bayesian GVAR," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 86-100.
  4. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
  5. Valentina Aprigliano & Alessandro Borin & Francesco Paolo Conteduca & Simone Emiliozzi & Marco Flaccadoro & Sabina Marchetti & Stefania Villa, 2021. "Forecasting Italian GDP growth with epidemiological data," Questioni di Economia e Finanza (Occasional Papers) 664, Bank of Italy, Economic Research and International Relations Area.
  6. Huber, Florian, 2016. "Density forecasting using Bayesian global vector autoregressions with stochastic volatility," International Journal of Forecasting, Elsevier, vol. 32(3), pages 818-837.
  7. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2020. "Efficient selection of hyperparameters in large Bayesian VARs using automatic differentiation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 934-943, September.
  8. Chiu, Ching-Wai (Jeremy) & Mumtaz, Haroon & Pinter, Gabor, 2016. "VAR models with non-Gaussian shocks," LSE Research Online Documents on Economics 86238, London School of Economics and Political Science, LSE Library.
  9. MeiChi Huang, 2022. "Time‐varying impacts of expectations on housing markets across hot and cold phases," International Finance, Wiley Blackwell, vol. 25(2), pages 249-265, August.
  10. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
  11. Joshua C. C. Chan & Gary Koop & Xuewen Yu, 2024. "Large Order-Invariant Bayesian VARs with Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 825-837, April.
  12. Gary Koop & Stuart McIntyre & James Mitchell, 2018. "UK regional nowcasting using a mixed frequency vector autoregressive model," Working Papers 1805, University of Strathclyde Business School, Department of Economics.
  13. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2024. "Capturing Macro‐Economic Tail Risks with Bayesian Vector Autoregressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(5), pages 1099-1127, August.
  14. Chan, Joshua C.C. & Yu, Xuewen, 2022. "Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
  15. Hardik A. Marfatia & Qiang Ji & Jiawen Luo, 2022. "Forecasting the volatility of agricultural commodity futures: The role of co‐volatility and oil volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 383-404, March.
  16. Gefang, Deborah & Koop, Gary & Poon, Aubrey, 2023. "Forecasting using variational Bayesian inference in large vector autoregressions with hierarchical shrinkage," International Journal of Forecasting, Elsevier, vol. 39(1), pages 346-363.
  17. Uribe Jorge M. & Chuliá Helena, 2023. "Expected, unexpected, good and bad aggregate uncertainty," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(2), pages 265-284, April.
  18. Fritsche, Jan Philipp & Klein, Mathias & Rieth, Malte, 2021. "Government spending multipliers in (un)certain times," Journal of Public Economics, Elsevier, vol. 203(C).
  19. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
  20. Markus Heinrich & Magnus Reif, 2018. "Forecasting using mixed-frequency VARs with time-varying parameters," ifo Working Paper Series 273, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
  21. Koop, Gary & Korobilis, Dimitris & Pettenuzzo, Davide, 2019. "Bayesian compressed vector autoregressions," Journal of Econometrics, Elsevier, vol. 210(1), pages 135-154.
  22. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
  23. Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Discussion Papers in Economics 19/05, Division of Economics, School of Business, University of Leicester.
  24. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
  25. Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2016. "A MIDAS approach to modeling first and second moment dynamics," Journal of Econometrics, Elsevier, vol. 193(2), pages 315-334.
  26. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
  27. Cross, Jamie L. & Hou, Chenghan & Koop, Gary & Poon, Aubrey, 2023. "Large stochastic volatility in mean VARs," Journal of Econometrics, Elsevier, vol. 236(1).
  28. Martin Feldkircher & Florian Huber & Michael Pfarrhofer, 2021. "Measuring the effectiveness of US monetary policy during the COVID‐19 recession," Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(3), pages 287-297, July.
  29. Michael Pfarrhofer, 2024. "Forecasts with Bayesian vector autoregressions under real time conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
  30. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Large Vector Autoregressions with Asymmetric Priors," Working Papers 759, Queen Mary University of London, School of Economics and Finance.
  31. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
  32. Tsionas, Mike G. & Izzeldin, Marwan & Trapani, Lorenzo, 2022. "Estimation of large dimensional time varying VARs using copulas," European Economic Review, Elsevier, vol. 141(C).
  33. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
  34. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
  35. Simon Beyeler, 2019. "Streamlining Time-varying VAR with a Factor Structure in the Parameters," Working Papers 19.03, Swiss National Bank, Study Center Gerzensee.
  36. Valeriu Nalban & Andra Smadu, 2020. "Financial disruptions and heightened uncertainty: a case for timely policy action," Working Papers 687, DNB.
  37. Primiceri, Giorgio & Lenza, Michele, 2020. "How to Estimate a VAR after March 2020," CEPR Discussion Papers 15245, C.E.P.R. Discussion Papers.
  38. Brave, Scott A. & Butters, R. Andrew & Justiniano, Alejandro, 2019. "Forecasting economic activity with mixed frequency BVARs," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1692-1707.
  39. Nalban, Valeriu & Smădu, Andra, 2021. "Asymmetric effects of uncertainty shocks: Normal times and financial disruptions are different," Journal of Macroeconomics, Elsevier, vol. 69(C).
  40. Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
  41. Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2021. "Using time-varying volatility for identification in Vector Autoregressions: An application to endogenous uncertainty," Journal of Econometrics, Elsevier, vol. 225(1), pages 47-73.
  42. Chan, Joshua C.C. & Eisenstat, Eric & Strachan, Rodney W., 2020. "Reducing the state space dimension in a large TVP-VAR," Journal of Econometrics, Elsevier, vol. 218(1), pages 105-118.
  43. Knüppel, Malte & Krüger, Fabian, 2017. "Forecast Uncertainty, Disagreement, and Linear Pools of Density Forecasts," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168294, Verein für Socialpolitik / German Economic Association.
  44. Follett, Lendie & Yu, Cindy, 2019. "Achieving parsimony in Bayesian vector autoregressions with the horseshoe prior," Econometrics and Statistics, Elsevier, vol. 11(C), pages 130-144.
  45. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Large Vector Autoregressions with Stochastic Volatility and Flexible Priors," Working Papers (Old Series) 1617, Federal Reserve Bank of Cleveland.
  46. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
  47. Carriero, Andrea & Mumtaz, Haroon & Theophilopoulou, Angeliki, 2015. "Macroeconomic information, structural change, and the prediction of fiscal aggregates," International Journal of Forecasting, Elsevier, vol. 31(2), pages 325-348.
  48. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
  49. Joshua C. C. Chan & Eric Eisenstat & Chenghan Hou & Gary Koop, 2020. "Composite likelihood methods for large Bayesian VARs with stochastic volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 692-711, September.
  50. Lenza, Michele & Moutachaker, Inès & Paredes, Joan, 2023. "Density forecasts of inflation: a quantile regression forest approach," CEPR Discussion Papers 18298, C.E.P.R. Discussion Papers.
  51. Florian Huber & Tamás Krisztin & Philipp Piribauer, 2017. "Forecasting Global Equity Indices Using Large Bayesian Vars," Bulletin of Economic Research, Wiley Blackwell, vol. 69(3), pages 288-308, July.
  52. Jamie L. Cross & Aubrey Poon, 2020. "On the contribution of international shocks in Australian business cycle fluctuations," Empirical Economics, Springer, vol. 59(6), pages 2613-2637, December.
  53. Frank C. Z. Wu, 2024. "Bayesian collapsed Gibbs sampling for a stochastic volatility model with a Dirichlet process mixture," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(4), pages 697-704, June.
  54. Nicolas Himounet & Francisco Serranito & Julien Vauday, 2021. "Uncertainty is bad for Business. Really?," Working Papers 2021.03, International Network for Economic Research - INFER.
  55. Joshua C.C. Chan & Rodney W. Strachan, 2023. "Bayesian State Space Models In Macroeconometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
  56. Joshua C. C. Chan, 2022. "Asymmetric conjugate priors for large Bayesian VARs," Quantitative Economics, Econometric Society, vol. 13(3), pages 1145-1169, July.
  57. Paul Labonne, 2022. "Asymmetric Uncertainty: Nowcasting Using Skewness in Real-time Data," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2022-23, Economic Statistics Centre of Excellence (ESCoE).
  58. Matteo Iacopini & Francesco Ravazzolo & Luca Rossini, 2022. "Bayesian Multivariate Quantile Regression with alternative Time-varying Volatility Specifications," Papers 2211.16121, arXiv.org, revised Aug 2024.
  59. Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2020. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 17-33, March.
  60. Chan, Joshua C.C., 2023. "Comparing stochastic volatility specifications for large Bayesian VARs," Journal of Econometrics, Elsevier, vol. 235(2), pages 1419-1446.
  61. Dovern, Jonas & Feldkircher, Martin & Huber, Florian, 2015. "Does Joint Modelling of the World Economy Pay Off? Evaluating Multivariate Forecasts from a Bayesian GVAR," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112999, Verein für Socialpolitik / German Economic Association.
  62. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
  63. Ankargren, Sebastian & Jonéus, Paulina, 2021. "Simulation smoothing for nowcasting with large mixed-frequency VARs," Econometrics and Statistics, Elsevier, vol. 19(C), pages 97-113.
  64. Chuliá, Helena & Guillén, Montserrat & Uribe, Jorge M., 2017. "Measuring uncertainty in the stock market," International Review of Economics & Finance, Elsevier, vol. 48(C), pages 18-33.
  65. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2021. "No‐arbitrage priors, drifting volatilities, and the term structure of interest rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 495-516, August.
  66. Huber, Florian, 2014. "Density Forecasting using Bayesian Global Vector Autoregressions with Common Stochastic Volatility," Department of Economics Working Paper Series 179, WU Vienna University of Economics and Business.
  67. Zhang, Bo & Nguyen, Bao H., 2020. "Real-time forecasting of the Australian macroeconomy using Bayesian VARs," Working Papers 2020-12, University of Tasmania, Tasmanian School of Business and Economics.
  68. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
  69. Heinrich, Markus, 2020. "Does the Current State of the Business Cycle matter for Real-Time Forecasting? A Mixed-Frequency Threshold VAR approach," EconStor Preprints 219312, ZBW - Leibniz Information Centre for Economics.
  70. Chenghan Hou & Bao Nguyen & Bo Zhang, 2023. "Real‐time forecasting of the Australian macroeconomy using flexible Bayesian VARs," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 418-451, March.
  71. Haroon Mumtaz & Laura Sunder‐Plassmann & Angeliki Theophilopoulou, 2018. "The State‐Level Impact of Uncertainty Shocks," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(8), pages 1879-1899, December.
  72. Bognanni, Mark & Zito, John, 2020. "Sequential Bayesian inference for vector autoregressions with stochastic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
  73. Irina Zviadadze, 2017. "Term Structure of Consumption Risk Premia in the Cross Section of Currency Returns," Journal of Finance, American Finance Association, vol. 72(4), pages 1529-1566, August.
  74. Haroon Mumtaz & Konstantinos Theodoridis, 2014. "The Changing Transmission of Uncertainty shocks in the US: An Empirical Analysis," Working Papers 735, Queen Mary University of London, School of Economics and Finance.
  75. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2020. "Large Time-Varying Volatility Models for Electricity Prices," Working Papers No 05/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
  76. Florian Huber & Gary Koop, 2023. "Fast and Order-invariant Inference in Bayesian VARs with Non-Parametric Shocks," Working Papers 2309, University of Strathclyde Business School, Department of Economics.
  77. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
  78. Chan, Joshua C.C. & Poon, Aubrey & Zhu, Dan, 2023. "High-dimensional conditionally Gaussian state space models with missing data," Journal of Econometrics, Elsevier, vol. 236(1).
  79. Arias, Jonas E. & Rubio-Ramírez, Juan F. & Shin, Minchul, 2023. "Macroeconomic forecasting and variable ordering in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1054-1086.
  80. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
  81. Dimitrios P. Louzis, 2019. "Steady‐state modeling and macroeconomic forecasting quality," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(2), pages 285-314, March.
  82. Eric Eisenstat & Joshua C.C. Chan & Rodney W. Strachan, 2018. "Reducing Dimensions in a Large TVP-VAR," Working Paper Series 43, Economics Discipline Group, UTS Business School, University of Technology, Sydney.
  83. Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
  84. repec:amu:wpaper:2013-04 is not listed on IDEAS
  85. Himounet, Nicolas, 2022. "Searching the nature of uncertainty: Macroeconomic and financial risks VS geopolitical and pandemic risks," International Economics, Elsevier, vol. 170(C), pages 1-31.
  86. Jan Prüser & Florian Huber, 2024. "Nonlinearities in macroeconomic tail risk through the lens of big data quantile regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 269-291, March.
  87. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2020. "The economic drivers of volatility and uncertainty," Temi di discussione (Economic working papers) 1285, Bank of Italy, Economic Research and International Relations Area.
  88. Ankargren Sebastian & Unosson Måns & Yang Yukai, 2020. "A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior," Journal of Time Series Econometrics, De Gruyter, vol. 12(2), pages 1-41, July.
  89. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
  90. Gregor Kastner & Florian Huber, 2020. "Sparse Bayesian vector autoregressions in huge dimensions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1142-1165, November.
  91. Prüser, Jan & Blagov, Boris, 2022. "Improving inference and forecasting in VAR models using cross-sectional information," Ruhr Economic Papers 960, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  92. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
  93. Jiawen Luo & Langnan Chen, 2019. "Multivariate realized volatility forecasts of agricultural commodity futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1565-1586, December.
  94. Byrne, Joseph P. & Cao, Shuo & Korobilis, Dimitris, 2019. "Decomposing global yield curve co-movement," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 500-513.
  95. Ellington, Michael, 2022. "Fat tails, serial dependence, and implied volatility index connections," European Journal of Operational Research, Elsevier, vol. 299(2), pages 768-779.
  96. Thore Schlaak & Malte Rieth & Maximilian Podstawski, 2023. "Monetary policy, external instruments, and heteroskedasticity," Quantitative Economics, Econometric Society, vol. 14(1), pages 161-200, January.
  97. Antonio Pacifico, 2022. "Structural Compressed Panel VAR with Stochastic Volatility: A Robust Bayesian Model Averaging Procedure," Econometrics, MDPI, vol. 10(3), pages 1-24, July.
  98. Samuel F. Onipede & Nafiu A. Bashir & Jamaladeen Abubakar, 2023. "Small open economies and external shocks: an application of Bayesian global vector autoregression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(2), pages 1673-1699, April.
  99. Zheng, Tingguo & Ye, Shiqi & Hong, Yongmiao, 2023. "Fast estimation of a large TVP-VAR model with score-driven volatilities," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
  100. Martin Feldkircher & Nico Hauzenberger, 2019. "How useful are time-varying parameter models for forecasting economic growth in CESEE?," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q1/19, pages 29-48.
  101. Roberto Leon-Gonzalez & Blessings Majoni, 2023. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," GRIPS Discussion Papers 23-07, National Graduate Institute for Policy Studies.
  102. Sebastian Ankargren & Paulina Jon'eus, 2019. "Estimating Large Mixed-Frequency Bayesian VAR Models," Papers 1912.02231, arXiv.org.
  103. Joshua C. C. Chan, 2019. "Large Bayesian vector autoregressions," CAMA Working Papers 2019-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  104. Chan, Joshua C.C., 2021. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
  105. Luo, Jiawen & Marfatia, Hardik A. & Ji, Qiang & Klein, Tony, 2023. "Co-volatility and asymmetric transmission of risks between the global oil and China's futures markets," Energy Economics, Elsevier, vol. 117(C).
  106. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong & Zhuang, Xin-Tian, 2019. "Non-Gaussian VARMA model with stochastic volatility and applications in stock market bubbles," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 129-136.
  107. Christine Garnier & Elmar Mertens & Edward Nelson, 2015. "Trend Inflation in Advanced Economies," International Journal of Central Banking, International Journal of Central Banking, vol. 11(4), pages 65-136, September.
  108. Haroon Mumtaz, 2020. "A Generalised Stochastic Volatility in Mean VAR. An Updated Algorithm," Working Papers 908, Queen Mary University of London, School of Economics and Finance.
  109. Barbara Rossi, 2018. "Identifying and estimating the effects of unconventional monetary policy in the data: How to do It and what have we learned?," Economics Working Papers 1641, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2020.
  110. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
  111. Reifschneider, David & Tulip, Peter, 2019. "Gauging the uncertainty of the economic outlook using historical forecasting errors: The Federal Reserve’s approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1564-1582.
  112. Cross, Jamie L. & Hou, Chenghan & Poon, Aubrey, 2020. "Macroeconomic forecasting with large Bayesian VARs: Global-local priors and the illusion of sparsity," International Journal of Forecasting, Elsevier, vol. 36(3), pages 899-915.
  113. Michele Lenza & Giorgio E. Primiceri, 2022. "How to estimate a vector autoregression after March 2020," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 688-699, June.
  114. Hadjiantoni, Stella & Kontoghiorghes, Erricos John, 2022. "An alternative numerical method for estimating large-scale time-varying parameter seemingly unrelated regressions models," Econometrics and Statistics, Elsevier, vol. 21(C), pages 1-18.
  115. Andrea Carriero & Davide Pettenuzzo & Shubhranshu Shekhar, 2024. "Macroeconomic Forecasting with Large Language Models," Papers 2407.00890, arXiv.org.
  116. Gary Koop & Stuart McIntyre & James Mitchell, 2020. "UK regional nowcasting using a mixed frequency vector auto‐regressive model with entropic tilting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 91-119, January.
  117. Jamie L. Cross & Chenghan Hou & Aubrey Poon, 2018. "International Transmission of Macroeconomic Uncertainty in Small Open Economies: An Empirical Approach," Working Papers No 12/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
  118. Mark Bognanni & John Zito, 2019. "Sequential Bayesian Inference for Vector Autoregressions with Stochastic Volatility," Working Papers 19-29, Federal Reserve Bank of Cleveland.
  119. Danilo Cascaldi-Garcia, 2022. "Pandemic Priors," International Finance Discussion Papers 1352, Board of Governors of the Federal Reserve System (U.S.).
  120. David Reifschneider & Peter Tulip, 2017. "Gauging the Uncertainty of the Economic Outlook Using Historical Forecasting Errors: The Federal Reserve's Approach," RBA Research Discussion Papers rdp2017-01, Reserve Bank of Australia.
  121. Nam, Kyungsik, 2021. "Investigating the effect of climate uncertainty on global commodity markets," Energy Economics, Elsevier, vol. 96(C).
  122. Nguyen, BH & Zhang, Bo, 2022. "Forecasting oil Prices: can large BVARs help?," Working Papers 2022-04, University of Tasmania, Tasmanian School of Business and Economics.
  123. Helena Chuliá & Jorge M. Uribe, 2019. "“Expected, Unexpected, Good and Bad Uncertainty"," IREA Working Papers 201919, University of Barcelona, Research Institute of Applied Economics, revised Nov 2019.
  124. Prüser, Jan, 2023. "Data-based priors for vector error correction models," International Journal of Forecasting, Elsevier, vol. 39(1), pages 209-227.
  125. Malte Knüppel & Fabian Krüger, 2022. "Forecast uncertainty, disagreement, and the linear pool," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 23-41, January.
  126. Todd E. Clark & Francesco Ravazzolo, 2012. "The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility," Working Papers (Old Series) 1218, Federal Reserve Bank of Cleveland.
  127. Crespo Cuaresma, Jesús & Huber, Florian & Onorante, Luca, 2020. "Fragility and the effect of international uncertainty shocks," Journal of International Money and Finance, Elsevier, vol. 108(C).
  128. Jamie L. Cross & Chenghan Hou & Gary Koop, 2021. "Macroeconomic Forecasting with Large Stochastic Volatility in Mean VARs," Working Papers No 04/2021, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
  129. Fu, Bowen, 2023. "Measuring the trend real interest rate in a data-rich environment," Journal of Economic Dynamics and Control, Elsevier, vol. 147(C).
  130. Aubrey Poon, 2018. "Assessing the Synchronicity and Nature of Australian State Business Cycles," The Economic Record, The Economic Society of Australia, vol. 94(307), pages 372-390, December.
  131. Paul Labonne, 2020. "Asymmetric uncertainty : Nowcasting using skewness in real-time data," Papers 2012.02601, arXiv.org, revised May 2024.
  132. Stefan Griller & Florian Huber & Michael Pfarrhofer, 2022. "Measuring Shocks to Central Bank Independence using Legal Rulings," Papers 2202.12695, arXiv.org.
  133. Hartwig, Benny, 2022. "Bayesian VARs and prior calibration in times of COVID-19," Discussion Papers 52/2022, Deutsche Bundesbank.
  134. Thomas B Götz & Klemens Hauzenberger, 2021. "Large mixed-frequency VARs with a parsimonious time-varying parameter structure," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 442-461.
  135. James P. LeSage & Daniel Hendrikz, 2019. "Large Bayesian vector autoregressive forecasting for regions: A comparison of methods based on alternative disturbance structures," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 62(3), pages 563-599, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.