My bibliography
Save this item
Estimation of origin-destination matrices from link flows on uncongested networks
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Anselmo Ramalho Pitombeira-Neto & Carlos Felipe Grangeiro Loureiro & Luis Eduardo Carvalho, 2020. "A Dynamic Hierarchical Bayesian Model for the Estimation of day-to-day Origin-destination Flows in Transportation Networks," Networks and Spatial Economics, Springer, vol. 20(2), pages 499-527, June.
- Lin, Pei-Wei & Chang, Gang-Len, 2007. "A generalized model and solution algorithm for estimation of the dynamic freeway origin-destination matrix," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 554-572, June.
- Bierlaire, Michel, 2002. "The total demand scale: a new measure of quality for static and dynamic origin-destination trip tables," Transportation Research Part B: Methodological, Elsevier, vol. 36(9), pages 837-850, November.
- Lo, Hing-Po & Chan, Chi-Pak, 2003. "Simultaneous estimation of an origin-destination matrix and link choice proportions using traffic counts," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(9), pages 771-788, November.
- Flurin S. Hänseler & Nicholas A. Molyneaux & Michel Bierlaire, 2017. "Estimation of Pedestrian Origin-Destination Demand in Train Stations," Transportation Science, INFORMS, vol. 51(3), pages 981-997, August.
- Nakayama, Shoichiro & Watling, David, 2014. "Consistent formulation of network equilibrium with stochastic flows," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 50-69.
- Fan, Yueyue & Yang, Han & Maheshwari, Saurabh & Yang, Yudi, 2020. "Improving Transportation Information Resilience: Error Estimation for Networked Sensor Data," Institute of Transportation Studies, Working Paper Series qt3t15p3cs, Institute of Transportation Studies, UC Davis.
- Castillo, Enrique & Menéndez, José María & Jiménez, Pilar, 2008. "Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 455-481, June.
- Yang, Yudi & Yang, Han & Fan, Yueyue, 2019. "Networked sensor data error estimation," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 20-39.
- Seungkyu Ryu, 2020. "A Bicycle Origin–Destination Matrix Estimation Based on a Two-Stage Procedure," Sustainability, MDPI, vol. 12(7), pages 1-14, April.
- Yang, Yudi & Fan, Yueyue, 2015. "Data dependent input control for origin–destination demand estimation using observability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 385-403.
- Hazelton, Martin L., 2003. "Some comments on origin-destination matrix estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 811-822, December.
- Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
- Sun, Ran & Fan, Yueyue, 2024. "Stochastic OD demand estimation using stochastic programming," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
- Michel Bierlaire & Frank Crittin, 2006. "Solving Noisy, Large-Scale Fixed-Point Problems and Systems of Nonlinear Equations," Transportation Science, INFORMS, vol. 40(1), pages 44-63, February.
- Barroso, Joana Maia Fernandes & Albuquerque-Oliveira, João Lucas & Oliveira-Neto, Francisco Moraes, 2020. "Correlation analysis of day-to-day origin-destination flows and traffic volumes in urban networks," Journal of Transport Geography, Elsevier, vol. 89(C).
- Hazelton, Martin L., 2008. "Statistical inference for time varying origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 542-552, July.
- Blume, Steffen O.P. & Corman, Francesco & Sansavini, Giovanni, 2022. "Bayesian origin-destination estimation in networked transit systems using nodal in- and outflow counts," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 60-94.
- Chen, Bi Yu & Lam, William H.K. & Sumalee, Agachai & Li, Qingquan & Li, Zhi-Chun, 2012. "Vulnerability analysis for large-scale and congested road networks with demand uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 501-516.
- Mínguez, R. & Sánchez-Cambronero, S. & Castillo, E. & Jiménez, P., 2010. "Optimal traffic plate scanning location for OD trip matrix and route estimation in road networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 282-298, February.
- Yang, Yudi & Fan, Yueyue & Royset, Johannes O., 2019. "Estimating probability distributions of travel demand on a congested network," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 265-286.
- ManWo Ng & Hong Lo, 2013. "Regional Air Quality Conformity in Transportation Networks with Stochastic Dependencies: A Theoretical Copula-Based Model," Networks and Spatial Economics, Springer, vol. 13(4), pages 373-397, December.
- Miller, Seth & Laan, Zachary Vander & Marković, Nikola, 2020. "Scaling GPS trajectories to match point traffic counts: A convex programming approach and Utah case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
- Castillo, Enrique & Menéndez, José María & Sánchez-Cambronero, Santos, 2008. "Predicting traffic flow using Bayesian networks," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 482-509, June.
- Hazelton, Martin L., 2001. "Inference for origin-destination matrices: estimation, prediction and reconstruction," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 667-676, August.
- Hazelton, Martin L. & Parry, Katharina, 2016. "Statistical methods for comparison of day-to-day traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 22-34.
- Hazelton, Martin L., 2010. "Bayesian inference for network-based models with a linear inverse structure," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 674-685, June.
- Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.