IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v122y2019icp20-39.html
   My bibliography  Save this article

Networked sensor data error estimation

Author

Listed:
  • Yang, Yudi
  • Yang, Han
  • Fan, Yueyue

Abstract

Nowadays, the effectiveness of any smart transportation management or control strategy would heavily depend on reliable traffic data collected by sensors. Two problems regarding sensor data quality have received attention: first, the problem of identifying malfunctioning sensors; second, reconstruction of traffic flow. Most existing studies concerned about identifying completely malfunctioning sensors whose data should be discarded. In this paper, we focus on the problem of error detection and data recovery of partially malfunctioning sensors that could provide valuable information. By integrating a sensor measurement error model and a transportation network model, we propose a Generalized Method of Moments (GMM) based estimation approach to determine the parameters of systematic and random errors of traffic sensors in a road network. The proposed method allows flexible data aggregation that ameliorates identification and accuracy. The estimates regarding both systematic and random errors are utilized to conduct hypothesis test on sensor health and to estimate true traffic flows with observed counts. The results of three network examples with different scales demonstrate the applicability of the proposed method in a large variety of scenarios.

Suggested Citation

  • Yang, Yudi & Yang, Han & Fan, Yueyue, 2019. "Networked sensor data error estimation," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 20-39.
  • Handle: RePEc:eee:transb:v:122:y:2019:i:c:p:20-39
    DOI: 10.1016/j.trb.2019.01.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261518309032
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2019.01.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cascetta, Ennio, 1984. "Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 289-299.
    2. Hazelton, Martin L., 2000. "Estimation of origin-destination matrices from link flows on uncongested networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(7), pages 549-566, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Hao & Lam, William H.K. & Shao, Hu & Ma, Wei & Chen, Bi Yu & Ho, H.W., 2022. "Optimization of multi-type sensor locations for simultaneous estimation of origin-destination demands and link travel times with covariance effects," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 19-47.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Yueyue & Yang, Han & Maheshwari, Saurabh & Yang, Yudi, 2020. "Improving Transportation Information Resilience: Error Estimation for Networked Sensor Data," Institute of Transportation Studies, Working Paper Series qt3t15p3cs, Institute of Transportation Studies, UC Davis.
    2. Castillo, Enrique & Menéndez, José María & Sánchez-Cambronero, Santos, 2008. "Predicting traffic flow using Bayesian networks," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 482-509, June.
    3. Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
    4. Michel Bierlaire & Frank Crittin, 2006. "Solving Noisy, Large-Scale Fixed-Point Problems and Systems of Nonlinear Equations," Transportation Science, INFORMS, vol. 40(1), pages 44-63, February.
    5. Anselmo Ramalho Pitombeira-Neto & Carlos Felipe Grangeiro Loureiro & Luis Eduardo Carvalho, 2020. "A Dynamic Hierarchical Bayesian Model for the Estimation of day-to-day Origin-destination Flows in Transportation Networks," Networks and Spatial Economics, Springer, vol. 20(2), pages 499-527, June.
    6. Flurin S. Hänseler & Nicholas A. Molyneaux & Michel Bierlaire, 2017. "Estimation of Pedestrian Origin-Destination Demand in Train Stations," Transportation Science, INFORMS, vol. 51(3), pages 981-997, August.
    7. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    8. Seungkyu Ryu, 2020. "A Bicycle Origin–Destination Matrix Estimation Based on a Two-Stage Procedure," Sustainability, MDPI, vol. 12(7), pages 1-14, April.
    9. Castillo, Enrique & Menéndez, José María & Jiménez, Pilar, 2008. "Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 455-481, June.
    10. Hazelton, Martin L., 2003. "Some comments on origin-destination matrix estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 811-822, December.
    11. Hazelton, Martin L., 2008. "Statistical inference for time varying origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 542-552, July.
    12. Blume, Steffen O.P. & Corman, Francesco & Sansavini, Giovanni, 2022. "Bayesian origin-destination estimation in networked transit systems using nodal in- and outflow counts," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 60-94.
    13. Yang, Yudi & Fan, Yueyue & Royset, Johannes O., 2019. "Estimating probability distributions of travel demand on a congested network," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 265-286.
    14. Bierlaire, Michel, 2002. "The total demand scale: a new measure of quality for static and dynamic origin-destination trip tables," Transportation Research Part B: Methodological, Elsevier, vol. 36(9), pages 837-850, November.
    15. Yang, Yudi & Fan, Yueyue, 2015. "Data dependent input control for origin–destination demand estimation using observability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 385-403.
    16. Lin, Pei-Wei & Chang, Gang-Len, 2007. "A generalized model and solution algorithm for estimation of the dynamic freeway origin-destination matrix," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 554-572, June.
    17. Lo, Hing-Po & Chan, Chi-Pak, 2003. "Simultaneous estimation of an origin-destination matrix and link choice proportions using traffic counts," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(9), pages 771-788, November.
    18. Sun, Ran & Fan, Yueyue, 2024. "Stochastic OD demand estimation using stochastic programming," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    19. Hazelton, Martin L., 2010. "Bayesian inference for network-based models with a linear inverse structure," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 674-685, June.
    20. Cho, Joongkoo & Hu, Weihong, 2013. "Network-Based Simulation of Air Pollution Emissions Associated with Truck Operations," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 52(3).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:122:y:2019:i:c:p:20-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.