My bibliography
Save this item
Parameter estimation for fractional Ornstein-Uhlenbeck processes
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Matthieu Garcin, 2019. "Estimation of Hurst exponents in a stationary framework [Estimation d'exposants de Hurst dans un cadre stationnaire]," Post-Print hal-02163662, HAL.
- Bondarenko, Valeria & Bondarenko, Victor & Truskovskyi, Kyryl, 2017. "Forecasting of time data with using fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 44-50.
- Harnett, Daniel & Nualart, David, 2018. "Central limit theorem for functionals of a generalized self-similar Gaussian process," Stochastic Processes and their Applications, Elsevier, vol. 128(2), pages 404-425.
- Matthieu Garcin, 2019. "Hurst Exponents And Delampertized Fractional Brownian Motions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-26, August.
- Andreas Neuenkirch & Samy Tindel, 2014. "A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise," Statistical Inference for Stochastic Processes, Springer, vol. 17(1), pages 99-120, April.
- Liu, Yanghui & Nualart, Eulalia & Tindel, Samy, 2019. "LAN property for stochastic differential equations with additive fractional noise and continuous time observation," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2880-2902.
- Wang, Xiaohu & Xiao, Weilin & Yu, Jun, 2023. "Modeling and forecasting realized volatility with the fractional Ornstein–Uhlenbeck process," Journal of Econometrics, Elsevier, vol. 232(2), pages 389-415.
- Hui Jiang & Jingying Zhou, 2023. "An Exponential Nonuniform Berry–Esseen Bound for the Fractional Ornstein–Uhlenbeck Process," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1037-1058, June.
- Nourdin, Ivan & Diu Tran, T.T., 2019. "Statistical inference for Vasicek-type model driven by Hermite processes," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3774-3791.
- Xichao Sun & Litan Yan & Yong Ge, 2022. "The Laws of Large Numbers Associated with the Linear Self-attracting Diffusion Driven by Fractional Brownian Motion and Applications," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1423-1478, September.
- Shi, Shuping & Yu, Jun & Zhang, Chen, 2024.
"On the spectral density of fractional Ornstein–Uhlenbeck processes,"
Journal of Econometrics, Elsevier, vol. 245(1).
- Shuping Shi & Jun Yu & Chen Zhang, 2024. "On the Spectral Density of Fractional Ornstein-Uhlenbeck Processes," Working Papers 202416, University of Macau, Faculty of Business Administration.
- Es-Sebaiy, Khalifa & Viens, Frederi G., 2019. "Optimal rates for parameter estimation of stationary Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3018-3054.
- Katsuto Tanaka & Weilin Xiao & Jun Yu, 2020.
"Maximum Likelihood Estimation for the Fractional Vasicek Model,"
Econometrics, MDPI, vol. 8(3), pages 1-28, August.
- Tanaka, Katsuto & Xiao, Weilin & Yu, Jun, 2019. "Maximum Likelihood Estimation for the Fractional Vasicek Model," Economics and Statistics Working Papers 8-2019, Singapore Management University, School of Economics.
- Marie, Nicolas, 2020. "Nonparametric estimation of the trend in reflected fractional SDE," Statistics & Probability Letters, Elsevier, vol. 158(C).
- Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
- Xiao, Weilin & Yu, Jun, 2019.
"Asymptotic theory for rough fractional Vasicek models,"
Economics Letters, Elsevier, vol. 177(C), pages 26-29.
- Xiao, Weilin & Yu, Jun, 2018. "Asymptotic Theory for Rough Fractional Vasicek Models," Economics and Statistics Working Papers 7-2018, Singapore Management University, School of Economics.
- Daniel Harnett & Arturo Jaramillo & David Nualart, 2019. "Symmetric Stochastic Integrals with Respect to a Class of Self-similar Gaussian Processes," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1105-1144, September.
- Xu, Weijun & Sun, Qi & Xiao, Weilin, 2012. "A new energy model to capture the behavior of energy price processes," Economic Modelling, Elsevier, vol. 29(5), pages 1585-1591.
- Douissi, Soukaina & Es-Sebaiy, Khalifa & Alshahrani, Fatimah & Viens, Frederi G., 2022. "AR(1) processes driven by second-chaos white noise: Berry–Esséen bounds for quadratic variation and parameter estimation," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 886-918.
- Katsuto Tanaka, 2013. "Distributions of the maximum likelihood and minimum contrast estimators associated with the fractional Ornstein–Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 173-192, October.
- Marco Dozzi & Yuriy Kozachenko & Yuliya Mishura & Kostiantyn Ralchenko, 2018. "Asymptotic growth of trajectories of multifractional Brownian motion, with statistical applications to drift parameter estimation," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 21-52, April.
- Marie, Nicolas, 2022. "Projection estimators of the stationary density of a differential equation driven by the fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 180(C).
- Li, Yicun & Teng, Yuanyang, 2023. "Statistical inference in discretely observed fractional Ornstein–Uhlenbeck processes," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Matthieu Garcin, 2018. "Hurst exponents and delampertized fractional Brownian motions," Working Papers hal-01919754, HAL.
- Qian Yu, 2021. "Least squares estimator of fractional Ornstein–Uhlenbeck processes with periodic mean for general Hurst parameter," Statistical Papers, Springer, vol. 62(2), pages 795-815, April.
- Tanaka, Katsuto & 田中, 勝人, 2011. "Distributions of the Maximum Likelihood and Minimum Contrast Estimators Associated with the Fractional Ornstein-Uhlenbeck Process," Discussion Papers 2011-07, Graduate School of Economics, Hitotsubashi University.
- Herold Dehling & Brice Franke & Jeannette H. C. Woerner, 2017. "Estimating drift parameters in a fractional Ornstein Uhlenbeck process with periodic mean," Statistical Inference for Stochastic Processes, Springer, vol. 20(1), pages 1-14, April.
- Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024. "The Multivariate Fractional Ornstein-Uhlenbeck Process," CEIS Research Paper 581, Tor Vergata University, CEIS, revised 28 Aug 2024.
- Marko Voutilainen & Lauri Viitasaari & Pauliina Ilmonen & Soledad Torres & Ciprian Tudor, 2022. "Vector‐valued generalized Ornstein–Uhlenbeck processes: Properties and parameter estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 992-1022, September.
- Radomyra Shevchenko & Ciprian A. Tudor, 2020. "Parameter estimation for the Rosenblatt Ornstein–Uhlenbeck process with periodic mean," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 227-247, April.
- Brouty, Xavier & Garcin, Matthieu, 2024. "Fractal properties, information theory, and market efficiency," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
- Khalifa Es-Sebaiy & Mohammed Es.Sebaiy, 2021. "Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 409-436, June.
- Zhang, Pu & Xiao, Wei-lin & Zhang, Xi-li & Niu, Pan-qiang, 2014. "Parameter identification for fractional Ornstein–Uhlenbeck processes based on discrete observation," Economic Modelling, Elsevier, vol. 36(C), pages 198-203.
- Katsuto Tanaka, 2015. "Maximum likelihood estimation for the non-ergodic fractional Ornstein–Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 18(3), pages 315-332, October.
- Sun, Qi & Xu, Weijun & Xiao, Weilin, 2013. "An empirical estimation for mean-reverting coal prices with long memory," Economic Modelling, Elsevier, vol. 33(C), pages 174-181.