Distributions of the Maximum Likelihood and Minimum Contrast Estimators Associated with the Fractional Ornstein-Uhlenbeck Process
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hu, Yaozhong & Nualart, David, 2010. "Parameter estimation for fractional Ornstein-Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 1030-1038, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Matthieu Garcin, 2019. "Estimation of Hurst exponents in a stationary framework [Estimation d'exposants de Hurst dans un cadre stationnaire]," Post-Print hal-02163662, HAL.
- Xu, Weijun & Sun, Qi & Xiao, Weilin, 2012. "A new energy model to capture the behavior of energy price processes," Economic Modelling, Elsevier, vol. 29(5), pages 1585-1591.
- Katsuto Tanaka, 2013. "Distributions of the maximum likelihood and minimum contrast estimators associated with the fractional Ornstein–Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 173-192, October.
- Qian Yu, 2021. "Least squares estimator of fractional Ornstein–Uhlenbeck processes with periodic mean for general Hurst parameter," Statistical Papers, Springer, vol. 62(2), pages 795-815, April.
- Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024. "The Multivariate Fractional Ornstein-Uhlenbeck Process," CEIS Research Paper 581, Tor Vergata University, CEIS, revised 28 Aug 2024.
- Khalifa Es-Sebaiy & Mohammed Es.Sebaiy, 2021. "Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 409-436, June.
- Zhang, Pu & Xiao, Wei-lin & Zhang, Xi-li & Niu, Pan-qiang, 2014. "Parameter identification for fractional Ornstein–Uhlenbeck processes based on discrete observation," Economic Modelling, Elsevier, vol. 36(C), pages 198-203.
- Bondarenko, Valeria & Bondarenko, Victor & Truskovskyi, Kyryl, 2017. "Forecasting of time data with using fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 44-50.
- Katsuto Tanaka, 2015. "Maximum likelihood estimation for the non-ergodic fractional Ornstein–Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 18(3), pages 315-332, October.
- Andreas Neuenkirch & Samy Tindel, 2014. "A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise," Statistical Inference for Stochastic Processes, Springer, vol. 17(1), pages 99-120, April.
- Katsuto Tanaka & Weilin Xiao & Jun Yu, 2020.
"Maximum Likelihood Estimation for the Fractional Vasicek Model,"
Econometrics, MDPI, vol. 8(3), pages 1-28, August.
- Tanaka, Katsuto & Xiao, Weilin & Yu, Jun, 2019. "Maximum Likelihood Estimation for the Fractional Vasicek Model," Economics and Statistics Working Papers 8-2019, Singapore Management University, School of Economics.
- Hui Jiang & Jingying Zhou, 2023. "An Exponential Nonuniform Berry–Esseen Bound for the Fractional Ornstein–Uhlenbeck Process," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1037-1058, June.
- Xiao, Weilin & Yu, Jun, 2019.
"Asymptotic theory for rough fractional Vasicek models,"
Economics Letters, Elsevier, vol. 177(C), pages 26-29.
- Xiao, Weilin & Yu, Jun, 2018. "Asymptotic Theory for Rough Fractional Vasicek Models," Economics and Statistics Working Papers 7-2018, Singapore Management University, School of Economics.
- Daniel Harnett & Arturo Jaramillo & David Nualart, 2019. "Symmetric Stochastic Integrals with Respect to a Class of Self-similar Gaussian Processes," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1105-1144, September.
- Brouty, Xavier & Garcin, Matthieu, 2024. "Fractal properties, information theory, and market efficiency," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
- Marie, Nicolas, 2020. "Nonparametric estimation of the trend in reflected fractional SDE," Statistics & Probability Letters, Elsevier, vol. 158(C).
- Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
- Li, Yicun & Teng, Yuanyang, 2023. "Statistical inference in discretely observed fractional Ornstein–Uhlenbeck processes," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Wang, Xiaohu & Xiao, Weilin & Yu, Jun, 2023. "Modeling and forecasting realized volatility with the fractional Ornstein–Uhlenbeck process," Journal of Econometrics, Elsevier, vol. 232(2), pages 389-415.
- Es-Sebaiy, Khalifa & Viens, Frederi G., 2019. "Optimal rates for parameter estimation of stationary Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3018-3054.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2011-08-22 (Econometrics)
- NEP-ETS-2011-08-22 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hit:econdp:2011-07. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Digital Resources Section, Hitotsubashi University Library (email available below). General contact details of provider: https://edirc.repec.org/data/fehitjp.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.