IDEAS home Printed from https://ideas.repec.org/r/eee/spapps/v92y2001i2p265-285.html
   My bibliography  Save this item

Finite and infinite time ruin probabilities in a stochastic economic environment

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jaakko Lehtomaa, 2015. "Asymptotic Behaviour of Ruin Probabilities in a General Discrete Risk Model Using Moment Indices," Journal of Theoretical Probability, Springer, vol. 28(4), pages 1380-1405, December.
  2. Yuri Kabanov & Serguei Pergamenshchikov, 2020. "Ruin probabilities for a Lévy-driven generalised Ornstein–Uhlenbeck process," Finance and Stochastics, Springer, vol. 24(1), pages 39-69, January.
  3. Grandits, Peter, 2004. "A Karamata-type theorem and ruin probabilities for an insurer investing proportionally in the stock market," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 297-305, April.
  4. Xiang Lin, 2009. "Ruin theory for classical risk process that is perturbed by diffusion with risky investments," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(1), pages 33-44, January.
  5. Pergamenshchikov, Serguei & Zeitouny, Omar, 2006. "Ruin probability in the presence of risky investments," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 267-278, February.
  6. Yang, Yang & Jiang, Tao & Wang, Kaiyong & Yuen, Kam C., 2020. "Interplay of financial and insurance risks in dependent discrete-time risk models," Statistics & Probability Letters, Elsevier, vol. 162(C).
  7. Yang, Yingying & Hu, Shuhe & Wu, Tao, 2011. "The tail probability of the product of dependent random variables from max-domains of attraction," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1876-1882.
  8. Yuchao Dong & Jérôme Spielmann, 2020. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Post-Print hal-02170829, HAL.
  9. Yuchao Dong & Jérôme Spielmann, 2019. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Working Papers hal-02170829, HAL.
  10. Buraczewski, D. & Damek, E. & Zienkiewicz, J., 2018. "Pointwise estimates for first passage times of perpetuity sequences," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 2923-2951.
  11. Paul Glasserman & Qi Wu, 2017. "Persistence and Procyclicality in Margin Requirements," Working Papers 17-01, Office of Financial Research, US Department of the Treasury.
  12. Nyrhinen, Harri, 2007. "Convex large deviation rate functions under mixtures of linear transformations, with an application to ruin theory," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 947-959, July.
  13. Xin-mei Shen & Zheng-yan Lin & Yi Zhang, 2009. "Uniform Estimate for Maximum of Randomly Weighted Sums with Applications to Ruin Theory," Methodology and Computing in Applied Probability, Springer, vol. 11(4), pages 669-685, December.
  14. Blanchet, Jose & Lam, Henry & Zwart, Bert, 2012. "Efficient rare-event simulation for perpetuities," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3361-3392.
  15. Yang Yang & Shuang Liu & Kam Chuen Yuen, 2022. "Second-Order Tail Behavior for Stochastic Discounted Value of Aggregate Net Losses in a Discrete-Time Risk Model," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2600-2621, December.
  16. Lindner, Alexander & Maller, Ross, 2005. "Lévy integrals and the stationarity of generalised Ornstein-Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 115(10), pages 1701-1722, October.
  17. Sun, Ying & Wei, Li, 2014. "The finite-time ruin probability with heavy-tailed and dependent insurance and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 178-183.
  18. Zhang, Yi & Shen, Xinmei & Weng, Chengguo, 2009. "Approximation of the tail probability of randomly weighted sums and applications," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 655-675, February.
  19. Tang, Qihe & Vernic, Raluca, 2007. "The impact on ruin probabilities of the association structure among financial risks," Statistics & Probability Letters, Elsevier, vol. 77(14), pages 1522-1525, August.
  20. Cai, Jun & Dickson, David C.M., 2004. "Ruin probabilities with a Markov chain interest model," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 513-525, December.
  21. Serguei Pergamenchtchikov & Zeitouny Omar, 2010. "Ruin probability in the presence of risky investments," Papers 1011.1329, arXiv.org.
  22. Li, Jinzhu, 2018. "On the joint tail behavior of randomly weighted sums of heavy-tailed random variables," Journal of Multivariate Analysis, Elsevier, vol. 164(C), pages 40-53.
  23. Paul Glasserman & Qi Wu, 2018. "Persistence and Procyclicality in Margin Requirements," Management Science, INFORMS, vol. 64(12), pages 5705-5724, December.
  24. Kostadinova, Radostina, 2007. "Optimal investment for insurers when the stock price follows an exponential Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 250-263, September.
  25. Harri Nyrhinen, 2015. "On real growth and run-off companies in insurance ruin theory," Papers 1511.01763, arXiv.org.
  26. Dong, Y. & Spielmann, J., 2020. "Weak limits of random coefficient autoregressive processes and their application in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 1-11.
  27. Qu, Zhihui & Chen, Yu, 2013. "Approximations of the tail probability of the product of dependent extremal random variables and applications," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 169-178.
  28. Jaunė, Eglė & Šiaulys, Jonas, 2022. "Asymptotic risk decomposition for regularly varying distributions with tail dependence," Applied Mathematics and Computation, Elsevier, vol. 427(C).
  29. Albrecher, Hansjoerg & Constantinescu, Corina & Thomann, Enrique, 2012. "Asymptotic results for renewal risk models with risky investments," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3767-3789.
  30. Leipus, Remigijus & Paukštys, Saulius & Šiaulys, Jonas, 2021. "Tails of higher-order moments of sums with heavy-tailed increments and application to the Haezendonck–Goovaerts risk measure," Statistics & Probability Letters, Elsevier, vol. 170(C).
  31. Bankovsky, Damien & Sly, Allan, 2009. "Exact conditions for no ruin for the generalised Ornstein-Uhlenbeck process," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2544-2562, August.
  32. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
  33. Chen, Yiqing, 2017. "Interplay of subexponential and dependent insurance and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 78-83.
  34. Chen, Yiqing & Liu, Jiajun & Liu, Fei, 2015. "Ruin with insurance and financial risks following the least risky FGM dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 98-106.
  35. Chen Yu & Zhang Weiping & Liu Jie, 2010. "Asymptotic Tail Probability of Randomly Weighted Sum of Dependent Heavy-Tailed Random Variables," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 4(2), pages 1-11, July.
  36. Klüppelberg, Claudia & Kostadinova, Radostina, 2008. "Integrated insurance risk models with exponential Lévy investment," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 560-577, April.
  37. Yuchao Dong & J'er^ome Spielmann, 2019. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Papers 1907.01828, arXiv.org, revised Feb 2020.
  38. Tang, Qihe & Tsitsiashvili, Gurami, 2003. "Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 299-325, December.
  39. Chen, Yu & Su, Chun, 2006. "Finite time ruin probability with heavy-tailed insurance and financial risks," Statistics & Probability Letters, Elsevier, vol. 76(16), pages 1812-1820, October.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.