IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v115y2005i10p1701-1722.html
   My bibliography  Save this article

Lévy integrals and the stationarity of generalised Ornstein-Uhlenbeck processes

Author

Listed:
  • Lindner, Alexander
  • Maller, Ross

Abstract

The generalised Ornstein-Uhlenbeck process constructed from a bivariate Lévy process ([xi]t,[eta]t)t[greater-or-equal, slanted]0 is defined aswhere V0 is an independent starting random variable. The stationarity of the process is closely related to the convergence or divergence of the Lévy integral . We make precise this relation in the general case, showing that the conditions are not in general equivalent, though they are for example if [xi] and [eta] are independent. Characterisations are expressed in terms of the Lévy measure of ([xi],[eta]). Conditions for the moments of the strictly stationary distribution to be finite are given, and the autocovariance function and the heavy-tailed behaviour of the stationary solution are also studied.

Suggested Citation

  • Lindner, Alexander & Maller, Ross, 2005. "Lévy integrals and the stationarity of generalised Ornstein-Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 115(10), pages 1701-1722, October.
  • Handle: RePEc:eee:spapps:v:115:y:2005:i:10:p:1701-1722
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(05)00066-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nyrhinen, Harri, 1999. "On the ruin probabilities in a general economic environment," Stochastic Processes and their Applications, Elsevier, vol. 83(2), pages 319-330, October.
    2. Kalashnikov, Vladimir & Norberg, Ragnar, 2002. "Power tailed ruin probabilities in the presence of risky investments," Stochastic Processes and their Applications, Elsevier, vol. 98(2), pages 211-228, April.
    3. Nyrhinen, Harri, 2001. "Finite and infinite time ruin probabilities in a stochastic economic environment," Stochastic Processes and their Applications, Elsevier, vol. 92(2), pages 265-285, April.
    4. de Haan, Laurens & Resnick, Sidney I. & Rootzén, Holger & de Vries, Casper G., 1989. "Extremal behaviour of solutions to a stochastic difference equation with applications to arch processes," Stochastic Processes and their Applications, Elsevier, vol. 32(2), pages 213-224, August.
    5. de Haan, L. & Karandikar, R. L., 1989. "Embedding a stochastic difference equation into a continuous-time process," Stochastic Processes and their Applications, Elsevier, vol. 32(2), pages 225-235, August.
    6. Paulsen, Jostein, 1993. "Risk theory in a stochastic economic environment," Stochastic Processes and their Applications, Elsevier, vol. 46(2), pages 327-361, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Behme, Anita & Lindner, Alexander & Reker, Jana & Rivero, Victor, 2021. "Continuity properties and the support of killed exponential functionals," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 115-146.
    2. Ernstsen, Rune Ramsdal & Boomsma, Trine Krogh, 2018. "Valuation of power plants," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1153-1174.
    3. Nikita Ratanov, 2022. "Kac-Ornstein-Uhlenbeck Processes: Stationary Distributions and Exponential Functionals," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2703-2721, December.
    4. Anita Behme & Alexander Lindner, 2015. "On Exponential Functionals of Lévy Processes," Journal of Theoretical Probability, Springer, vol. 28(2), pages 681-720, June.
    5. Bertoin, Jean, 2019. "Ergodic aspects of some Ornstein–Uhlenbeck type processes related to Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1443-1454.
    6. Behme, Anita & Di Tella, Paolo & Sideris, Apostolos, 2024. "On moments of integrals with respect to Markov additive processes and of Markov modulated generalized Ornstein–Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
    7. Behme, Anita & Lindner, Alexander, 2012. "Multivariate generalized Ornstein–Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1487-1518.
    8. Endo, Kotaro & Matsui, Muneya, 2008. "The stationarity of multidimensional generalized Ornstein-Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2265-2272, October.
    9. Kostadinova, Radostina, 2007. "Optimal investment for insurers when the stock price follows an exponential Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 250-263, September.
    10. Behme, Anita & Chong, Carsten & Klüppelberg, Claudia, 2015. "Superposition of COGARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1426-1469.
    11. Kevei, Péter, 2018. "Ergodic properties of generalized Ornstein–Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 156-181.
    12. Behme, Anita & Lindner, Alexander & Maller, Ross, 2011. "Stationary solutions of the stochastic differential equation with Lévy noise," Stochastic Processes and their Applications, Elsevier, vol. 121(1), pages 91-108, January.
    13. Bankovsky, Damien & Sly, Allan, 2009. "Exact conditions for no ruin for the generalised Ornstein-Uhlenbeck process," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2544-2562, August.
    14. Brandes, Dirk-Philip & Lindner, Alexander, 2014. "Non-causal strictly stationary solutions of random recurrence equations," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 113-118.
    15. Bankovsky, Damien, 2010. "Conditions for certain ruin for the generalised Ornstein-Uhlenbeck process and the structure of the upper and lower bounds," Stochastic Processes and their Applications, Elsevier, vol. 120(2), pages 255-280, February.
    16. Klüppelberg, Claudia & Kostadinova, Radostina, 2008. "Integrated insurance risk models with exponential Lévy investment," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 560-577, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Y. & Spielmann, J., 2020. "Weak limits of random coefficient autoregressive processes and their application in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 1-11.
    2. Nyrhinen, Harri, 2007. "Convex large deviation rate functions under mixtures of linear transformations, with an application to ruin theory," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 947-959, July.
    3. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    4. Yuri Kabanov & Serguei Pergamenshchikov, 2020. "Ruin probabilities for a Lévy-driven generalised Ornstein–Uhlenbeck process," Finance and Stochastics, Springer, vol. 24(1), pages 39-69, January.
    5. Yuen, Kam C. & Wang, Guojing & Ng, Kai W., 2004. "Ruin probabilities for a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 259-274, April.
    6. Kostadinova, Radostina, 2007. "Optimal investment for insurers when the stock price follows an exponential Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 250-263, September.
    7. Yuchao Dong & J'er^ome Spielmann, 2019. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Papers 1907.01828, arXiv.org, revised Feb 2020.
    8. Tang, Qihe & Tsitsiashvili, Gurami, 2003. "Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 299-325, December.
    9. Yuchao Dong & Jérôme Spielmann, 2020. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Post-Print hal-02170829, HAL.
    10. Yuchao Dong & Jérôme Spielmann, 2019. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Working Papers hal-02170829, HAL.
    11. Chen, Yu & Su, Chun, 2006. "Finite time ruin probability with heavy-tailed insurance and financial risks," Statistics & Probability Letters, Elsevier, vol. 76(16), pages 1812-1820, October.
    12. Yang, Yingying & Hu, Shuhe & Wu, Tao, 2011. "The tail probability of the product of dependent random variables from max-domains of attraction," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1876-1882.
    13. Yuen, Kam C. & Wang, Guojing & Wu, Rong, 2006. "On the renewal risk process with stochastic interest," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1496-1510, October.
    14. Cai, Jun & Dickson, David C.M., 2004. "Ruin probabilities with a Markov chain interest model," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 513-525, December.
    15. Buraczewski, D. & Damek, E. & Zienkiewicz, J., 2018. "Pointwise estimates for first passage times of perpetuity sequences," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 2923-2951.
    16. Klüppelberg, Claudia & Kostadinova, Radostina, 2008. "Integrated insurance risk models with exponential Lévy investment," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 560-577, April.
    17. Grandits, Peter, 2004. "A Karamata-type theorem and ruin probabilities for an insurer investing proportionally in the stock market," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 297-305, April.
    18. Kalashnikov, Vladimir & Norberg, Ragnar, 2002. "Power tailed ruin probabilities in the presence of risky investments," Stochastic Processes and their Applications, Elsevier, vol. 98(2), pages 211-228, April.
    19. Tang, Qihe & Vernic, Raluca, 2007. "The impact on ruin probabilities of the association structure among financial risks," Statistics & Probability Letters, Elsevier, vol. 77(14), pages 1522-1525, August.
    20. Xin-mei Shen & Zheng-yan Lin & Yi Zhang, 2009. "Uniform Estimate for Maximum of Randomly Weighted Sums with Applications to Ruin Theory," Methodology and Computing in Applied Probability, Springer, vol. 11(4), pages 669-685, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:115:y:2005:i:10:p:1701-1722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.