IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v122y2012i10p3361-3392.html
   My bibliography  Save this article

Efficient rare-event simulation for perpetuities

Author

Listed:
  • Blanchet, Jose
  • Lam, Henry
  • Zwart, Bert

Abstract

We consider perpetuities of the form D=B1exp(Y1)+B2exp(Y1+Y2)+⋯, where the Yj’s and Bj’s might be i.i.d. or jointly driven by a suitable Markov chain. We assume that the Yj’s satisfy the so-called Cramér condition with associated root θ∗∈(0,∞) and that the tails of the Bj’s are appropriately behaved so that D is regularly varying with index θ∗. We illustrate by means of an example that the natural state-independent importance sampling estimator obtained by exponentially tilting the Yj’s according to θ∗ fails to provide an efficient estimator (in the sense of appropriately controlling the relative mean squared error as the tail probability of interest gets smaller). Then, we construct estimators based on state-dependent importance sampling that are rigorously shown to be efficient.

Suggested Citation

  • Blanchet, Jose & Lam, Henry & Zwart, Bert, 2012. "Efficient rare-event simulation for perpetuities," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3361-3392.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:10:p:3361-3392
    DOI: 10.1016/j.spa.2012.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912000889
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2012.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Saporta, BenoI^te, 2005. "Tail of the stationary solution of the stochastic equation Yn+1=anYn+bn with Markovian coefficients," Stochastic Processes and their Applications, Elsevier, vol. 115(12), pages 1954-1978, December.
    2. Paul Dupuis & Hui Wang, 2007. "Subsolutions of an Isaacs Equation and Efficient Schemes for Importance Sampling," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 723-757, August.
    3. Nyrhinen, Harri, 2001. "Finite and infinite time ruin probabilities in a stochastic economic environment," Stochastic Processes and their Applications, Elsevier, vol. 92(2), pages 265-285, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Vries, Harwin & Duijzer, Evelot, 2017. "Incorporating driving range variability in network design for refueling facilities," Omega, Elsevier, vol. 69(C), pages 102-114.
    2. Basrak, Bojan & Conroy, Michael & Olvera-Cravioto, Mariana & Palmowski, Zbigniew, 2022. "Importance sampling for maxima on trees," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 139-179.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yingying & Hu, Shuhe & Wu, Tao, 2011. "The tail probability of the product of dependent random variables from max-domains of attraction," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1876-1882.
    2. Benhabib, Jess & Bisin, Alberto & Zhu, Shenghao, 2015. "The wealth distribution in Bewley economies with capital income risk," Journal of Economic Theory, Elsevier, vol. 159(PA), pages 489-515.
    3. Cai, Jun & Dickson, David C.M., 2004. "Ruin probabilities with a Markov chain interest model," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 513-525, December.
    4. Toda, Alexis Akira, 2019. "Wealth distribution with random discount factors," Journal of Monetary Economics, Elsevier, vol. 104(C), pages 101-113.
    5. Kostadinova, Radostina, 2007. "Optimal investment for insurers when the stock price follows an exponential Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 250-263, September.
    6. Buraczewski, D. & Damek, E. & Zienkiewicz, J., 2018. "Pointwise estimates for first passage times of perpetuity sequences," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 2923-2951.
    7. Kleijnen, Jack P.C. & Ridder, A.A.N. & Rubinstein, R.Y., 2010. "Variance Reduction Techniques in Monte Carlo Methods," Other publications TiSEM 87680d1a-53c1-4107-ada4-7, Tilburg University, School of Economics and Management.
    8. Leipus, Remigijus & Paukštys, Saulius & Šiaulys, Jonas, 2021. "Tails of higher-order moments of sums with heavy-tailed increments and application to the Haezendonck–Goovaerts risk measure," Statistics & Probability Letters, Elsevier, vol. 170(C).
    9. Klüppelberg, Claudia & Kostadinova, Radostina, 2008. "Integrated insurance risk models with exponential Lévy investment," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 560-577, April.
    10. Jess Benhabib & Alberto Bisin & Shenghao Zhu, 2011. "The Distribution of Wealth and Fiscal Policy in Economies With Finitely Lived Agents," Econometrica, Econometric Society, vol. 79(1), pages 123-157, January.
    11. Grandits, Peter, 2004. "A Karamata-type theorem and ruin probabilities for an insurer investing proportionally in the stock market," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 297-305, April.
    12. Tang, Qihe & Vernic, Raluca, 2007. "The impact on ruin probabilities of the association structure among financial risks," Statistics & Probability Letters, Elsevier, vol. 77(14), pages 1522-1525, August.
    13. Christian Pietro & Marco M. Sorge, 2018. "Stochastic dominance and thick-tailed wealth distributions," Journal of Economics, Springer, vol. 123(2), pages 141-159, March.
    14. Anne Buijsrogge & Pieter-Tjerk Boer & Werner R. W. Scheinhardt, 2019. "Importance sampling for non-Markovian tandem queues using subsolutions," Queueing Systems: Theory and Applications, Springer, vol. 93(1), pages 31-65, October.
    15. Xiang Lin, 2009. "Ruin theory for classical risk process that is perturbed by diffusion with risky investments," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(1), pages 33-44, January.
    16. Xin-mei Shen & Zheng-yan Lin & Yi Zhang, 2009. "Uniform Estimate for Maximum of Randomly Weighted Sums with Applications to Ruin Theory," Methodology and Computing in Applied Probability, Springer, vol. 11(4), pages 669-685, December.
    17. Qu, Zhihui & Chen, Yu, 2013. "Approximations of the tail probability of the product of dependent extremal random variables and applications," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 169-178.
    18. Bankovsky, Damien & Sly, Allan, 2009. "Exact conditions for no ruin for the generalised Ornstein-Uhlenbeck process," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2544-2562, August.
    19. Yuchao Dong & J'er^ome Spielmann, 2019. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Papers 1907.01828, arXiv.org, revised Feb 2020.
    20. Paul Dupuis & Kevin Leder & Hui Wang, 2009. "Importance Sampling for Weighted-Serve-the-Longest-Queue," Mathematics of Operations Research, INFORMS, vol. 34(3), pages 642-660, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:10:p:3361-3392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.