IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v119y2009i8p2544-2562.html
   My bibliography  Save this article

Exact conditions for no ruin for the generalised Ornstein-Uhlenbeck process

Author

Listed:
  • Bankovsky, Damien
  • Sly, Allan

Abstract

For a bivariate Lévy process ([xi]t,[eta]t)t>=0 the generalised Ornstein-Uhlenbeck (GOU) process is defined as where . We define necessary and sufficient conditions under which the infinite horizon ruin probability for the process is zero. These conditions are stated in terms of the canonical characteristics of the Lévy process and reveal the effect of the dependence relationship between [xi] and [eta]. We also present technical results which explain the structure of the lower bound of the GOU.

Suggested Citation

  • Bankovsky, Damien & Sly, Allan, 2009. "Exact conditions for no ruin for the generalised Ornstein-Uhlenbeck process," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2544-2562, August.
  • Handle: RePEc:eee:spapps:v:119:y:2009:i:8:p:2544-2562
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00005-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paulsen, Jostein, 1998. "Sharp conditions for certain ruin in a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 75(1), pages 135-148, June.
    2. Kalashnikov, Vladimir & Norberg, Ragnar, 2002. "Power tailed ruin probabilities in the presence of risky investments," Stochastic Processes and their Applications, Elsevier, vol. 98(2), pages 211-228, April.
    3. Nyrhinen, Harri, 2001. "Finite and infinite time ruin probabilities in a stochastic economic environment," Stochastic Processes and their Applications, Elsevier, vol. 92(2), pages 265-285, April.
    4. Lindner, Alexander & Maller, Ross, 2005. "Lévy integrals and the stationarity of generalised Ornstein-Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 115(10), pages 1701-1722, October.
    5. Harrison, J. Michael, 1977. "Ruin problems with compounding assets," Stochastic Processes and their Applications, Elsevier, vol. 5(1), pages 67-79, February.
    6. Patie, Pierre, 2005. "On a martingale associated to generalized Ornstein-Uhlenbeck processes and an application to finance," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 593-607, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bankovsky, Damien, 2010. "Conditions for certain ruin for the generalised Ornstein-Uhlenbeck process and the structure of the upper and lower bounds," Stochastic Processes and their Applications, Elsevier, vol. 120(2), pages 255-280, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kostadinova, Radostina, 2007. "Optimal investment for insurers when the stock price follows an exponential Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 250-263, September.
    2. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    3. Yuri Kabanov & Serguei Pergamenshchikov, 2020. "Ruin probabilities for a Lévy-driven generalised Ornstein–Uhlenbeck process," Finance and Stochastics, Springer, vol. 24(1), pages 39-69, January.
    4. Grandits, Peter, 2004. "A Karamata-type theorem and ruin probabilities for an insurer investing proportionally in the stock market," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 297-305, April.
    5. Tang, Qihe & Tsitsiashvili, Gurami, 2003. "Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 299-325, December.
    6. Yuchao Dong & Jérôme Spielmann, 2020. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Post-Print hal-02170829, HAL.
    7. Yuchao Dong & J'er^ome Spielmann, 2019. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Papers 1907.01828, arXiv.org, revised Feb 2020.
    8. Pergamenshchikov, Serguei & Zeitouny, Omar, 2006. "Ruin probability in the presence of risky investments," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 267-278, February.
    9. Yuchao Dong & Jérôme Spielmann, 2019. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Working Papers hal-02170829, HAL.
    10. Serguei Pergamenchtchikov & Zeitouny Omar, 2010. "Ruin probability in the presence of risky investments," Papers 1011.1329, arXiv.org.
    11. Dong, Y. & Spielmann, J., 2020. "Weak limits of random coefficient autoregressive processes and their application in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 1-11.
    12. Nyrhinen, Harri, 2007. "Convex large deviation rate functions under mixtures of linear transformations, with an application to ruin theory," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 947-959, July.
    13. Yuen, Kam C. & Wang, Guojing & Ng, Kai W., 2004. "Ruin probabilities for a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 259-274, April.
    14. Bankovsky, Damien, 2010. "Conditions for certain ruin for the generalised Ornstein-Uhlenbeck process and the structure of the upper and lower bounds," Stochastic Processes and their Applications, Elsevier, vol. 120(2), pages 255-280, February.
    15. Albrecher, Hansjoerg & Constantinescu, Corina & Thomann, Enrique, 2012. "Asymptotic results for renewal risk models with risky investments," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3767-3789.
    16. Xiong, Sheng & Yang, Wei-Shih, 2011. "Ruin probability in the Cramér-Lundberg model with risky investments," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1125-1137, May.
    17. Lindner, Alexander & Maller, Ross, 2005. "Lévy integrals and the stationarity of generalised Ornstein-Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 115(10), pages 1701-1722, October.
    18. Klüppelberg, Claudia & Kostadinova, Radostina, 2008. "Integrated insurance risk models with exponential Lévy investment," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 560-577, April.
    19. Paulsen, Jostein, 1998. "Ruin theory with compounding assets -- a survey," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 3-16, May.
    20. Xiang Lin, 2009. "Ruin theory for classical risk process that is perturbed by diffusion with risky investments," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(1), pages 33-44, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:8:p:2544-2562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.