IDEAS home Printed from https://ideas.repec.org/r/eee/resene/v23y2001i3p215-239.html
   My bibliography  Save this item

The effect of new technology on energy consumption

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sun, Huaping & Edziah, Bless Kofi & Kporsu, Anthony Kwaku & Sarkodie, Samuel Asumadu & Taghizadeh-Hesary, Farhad, 2021. "Energy efficiency: The role of technological innovation and knowledge spillover," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
  2. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
  3. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516, Elsevier.
  4. Leitão, João & Ferreira, Joaquim & Santibanez-González, Ernesto, 2022. "New insights into decoupling economic growth, technological progress and carbon dioxide emissions: Evidence from 40 countries," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
  5. Lisandro Abrego & Carlo Perroni, 2002. "Investment subsidies and Time-Consistent Environmental Policy," Oxford Economic Papers, Oxford University Press, vol. 54(4), pages 617-635, October.
  6. Nathalie Lazaric & Jun Jin & Ali Douai & Cécile Ayerbe, 2014. "Role of Users in the Developing Eco-Innovation: Comparative case research in China and France," Post-Print halshs-01070168, HAL.
  7. Okay, Nesrin & Akman, Ugur, 2010. "Analysis of ESCO activities using country indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2760-2771, December.
  8. Choi, Hyundo & Anadón, Laura Díaz, 2014. "The role of the complementary sector and its relationship with network formation and government policies in emerging sectors: The case of solar photovoltaics between 2001 and 2009," Technological Forecasting and Social Change, Elsevier, vol. 82(C), pages 80-94.
  9. Valery Meshalkin & Elena Shinkar & Nadezhda Berberova & Nadezhda Pivovarova & Foat Ismagilov & Andrey Okhlobystin, 2020. "Logical-Information Model of Energy-Saving Production of Organic Sulfur Compounds from Low-Molecular Sulfur Waste Fuel Oil," Energies, MDPI, vol. 13(20), pages 1-22, October.
  10. Li, George Yunxiong & Ascani, Andrea & Iammarino, Simona, 2024. "The material basis of modern technologies. A case study on rare metals," Research Policy, Elsevier, vol. 53(1).
  11. Triguero, Angela & Moreno-Mondéjar, Lourdes & Davia, María A., 2014. "The influence of energy prices on adoption of clean technologies and recycling: Evidence from European SMEs," Energy Economics, Elsevier, vol. 46(C), pages 246-257.
  12. David Popp, 2003. "ENTICE: Endogenous Technological Change in the DICE Model of Global Warming," NBER Working Papers 9762, National Bureau of Economic Research, Inc.
  13. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
  14. Garrone, Paola & Grilli, Luca & Mrkajic, Boris, 2017. "The energy-efficient transformation of EU business enterprises: Adapting policies to contextual factors," Energy Policy, Elsevier, vol. 109(C), pages 49-58.
  15. Joshua Linn, 2008. "Energy Prices and the Adoption of Energy-Saving Technology," Economic Journal, Royal Economic Society, vol. 118(533), pages 1986-2012, November.
  16. Zarepour, Z. & Wagner, N., 2022. "How manufacturing firms respond to energy subsidy reforms?," ISS Working Papers - General Series 696, International Institute of Social Studies of Erasmus University Rotterdam (ISS), The Hague.
  17. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
  18. Henriksson, Eva & Söderholm, Patrik & Wårell, Linda, 2012. "Industrial electricity demand and energy efficiency policy: The role of price changes and private R&D in the Swedish pulp and paper industry," Energy Policy, Elsevier, vol. 47(C), pages 437-446.
  19. Jingdong Zhong, 2019. "Biased Technical Change, Factor Substitution, and Carbon Emissions Efficiency in China," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
  20. Manel Kamoun & Ines Abdelkafi & Abdelfetah Ghorbel, 2019. "The Impact of Renewable Energy on Sustainable Growth: Evidence from a Panel of OECD Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 10(1), pages 221-237, March.
  21. Guenter Lang, 2008. "Measuring the Returns of Research and Development: An Empirical Study of the German Manufacturing Sector over 45 Years," Working Papers 10, The German University in Cairo, Faculty of Management Technology.
  22. Jorgenson, Dale & Goettle, Richard & Ho, Mun Sing & Wilcoxen, Peter, 2009. "Cap and trade climate policy and U.S. economic adjustments," Journal of Policy Modeling, Elsevier, vol. 31(3), pages 362-381, May.
  23. Zheming Yan & Rui Shi & Zhiming Yang, 2018. "ICT Development and Sustainable Energy Consumption: A Perspective of Energy Productivity," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
  24. Bibas, Ruben & Méjean, Aurélie & Hamdi-Cherif, Meriem, 2015. "Energy efficiency policies and the timing of action: An assessment of climate mitigation costs," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 137-152.
  25. Jeroen C.J.M. van den Bergh & Arild Angelsen & Andrea Baranzini & W.J. Wouter Botzen & Stefano Carattini & Stefan Drews & Tessa Dunlop & Eric Galbraith & Elisabeth Gsottbauer & Richard B. Howarth & Em, 2018. "Parallel tracks towards a global treaty on carbon pricing," Working Papers 2018/12, Institut d'Economia de Barcelona (IEB).
  26. Johanna Vogel & Kurt Kratena & Kathrin Hofmann, 2015. "The Bias of Technological Change in Europe. WWWforEurope Working Paper No. 98," WIFO Studies, WIFO, number 58200, April.
  27. Brutschin, Elina & Fleig, Andreas, 2016. "Innovation in the energy sector – The role of fossil fuels and developing economies," Energy Policy, Elsevier, vol. 97(C), pages 27-38.
  28. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
  29. Antung Anthony Liu & Hiroaki Yamagami, 2018. "Environmental Policy in the Presence of Induced Technological Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 279-299, September.
  30. Steinbuks, Jevgenijs & Neuhoff, Karsten, 2014. "Assessing energy price induced improvements in efficiency of capital in OECD manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 340-356.
  31. Jan Witajewski-Baltvilks & Elena Verdolini & Massimo Tavoni, 2015. "Directed Technological Change and Energy Efficiency Improvements," Working Papers 2015.78, Fondazione Eni Enrico Mattei.
  32. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
  33. Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, 2017. "Induced technological change and energy efficiency improvements," Energy Economics, Elsevier, vol. 68(S1), pages 17-32.
  34. Kemfert, Claudia & Truong, Truong, 2007. "Impact assessment of emissions stabilization scenarios with and without induced technological change," Energy Policy, Elsevier, vol. 35(11), pages 5337-5345, November.
  35. Shi-jie Jiang & Lilin Wang & Feiyun Xiang, 2023. "The Effect of Agriculture Insurance on Agricultural Carbon Emissions in China: The Mediation Role of Low-Carbon Technology Innovation," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
  36. Mahmood Mahmoodzadeh & Somaye Sadeghi & Soraya Sadeghi & Saleh Ghavidel, 2015. "Innovation Investments and Energy Efficiency in Iranian Industries," Proceedings of International Academic Conferences 2804578, International Institute of Social and Economic Sciences.
  37. David Popp, 2006. "Exploring Links Between Innovation and Diffusion: Adoption of NOx Control Technologies at U.S. Coal-Fired Power Plants," NBER Working Papers 12119, National Bureau of Economic Research, Inc.
  38. Lang, Guenter, 2009. "Measuring the returns of R&D--An empirical study of the German manufacturing sector over 45 years," Research Policy, Elsevier, vol. 38(9), pages 1438-1445, November.
  39. Khezri, Mohsen & Mamkhezri, Jamal & Heshmati, Almas, 2024. "Exploring non-linear causal nexus between economic growth and energy consumption across various R&D regimes: Cross-country evidence from a PSTR model," Energy Economics, Elsevier, vol. 133(C).
  40. Zheming Yan & Lan Yi & Kerui Du & Zhiming Yang, 2017. "Impacts of Low-Carbon Innovation and Its Heterogeneous Components on CO 2 Emissions," Sustainability, MDPI, vol. 9(4), pages 1-14, April.
  41. David Popp, 2004. "ENTICE-BR: The Effects of Backstop Technology R&D on Climate Policy Models," NBER Working Papers 10285, National Bureau of Economic Research, Inc.
  42. Smulders, J.A., 2005. "Endogenous technological change, natural resources and growth," Other publications TiSEM d6e27500-7604-420f-9961-4, Tilburg University, School of Economics and Management.
  43. Fisher-Vanden, Karen & Ho, Mun S., 2010. "Technology, development, and the environment," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 94-108, January.
  44. Marek Antosiewicz & Piotr Lewandowski & Jan Witajewski-Baltvilks, 2016. "Input vs. Output Taxation—A DSGE Approach to Modelling Resource Decoupling," Sustainability, MDPI, vol. 8(4), pages 1-17, April.
  45. Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
  46. Lutz, Benjamin Johannes & Massier, Philipp & Sommerfeld, Katrin & Löschel, Andreas, 2017. "Drivers of energy efficiency in German manufacturing: A firm-level stochastic frontier analysis," ZEW Discussion Papers 17-068, ZEW - Leibniz Centre for European Economic Research.
  47. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
  48. Luisanna Onnis & Patrizio Tirelli, 2010. "Challenging the popular wisdom. New estimates of the unobserved economy," Working Papers 184, University of Milano-Bicocca, Department of Economics, revised Apr 2010.
  49. Mertzanis, Charilaos & Garas, Samy & Abdel-Maksoud, Ahmed, 2020. "Integrity of financial information and firms' access to energy in developing countries," Energy Economics, Elsevier, vol. 92(C).
  50. Shahbaz, Muhammad & Chaudhary, A.R. & Ozturk, Ilhan, 2017. "Does urbanization cause increasing energy demand in Pakistan? Empirical evidence from STIRPAT model," Energy, Elsevier, vol. 122(C), pages 83-93.
  51. Tang, Chor Foon & Tan, Eu Chye, 2013. "Exploring the nexus of electricity consumption, economic growth, energy prices and technology innovation in Malaysia," Applied Energy, Elsevier, vol. 104(C), pages 297-305.
  52. Amann, Juergen & Cantore, Nicola & Calí, Massimiliano & Todorov, Valentin & Cheng, Charles Fang Chin, 2021. "Switching it up: The effect of energy price reforms in Oman," World Development, Elsevier, vol. 142(C).
  53. Guo, Pibin & Wang, Ting & Li, Dan & Zhou, Xijun, 2016. "How energy technology innovation affects transition of coal resource-based economy in China," Energy Policy, Elsevier, vol. 92(C), pages 1-6.
  54. Corrado Maria & Edwin Werf, 2008. "Carbon leakage revisited: unilateral climate policy with directed technical change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(2), pages 55-74, February.
  55. Yu, Huayi, 2012. "The influential factors of China's regional energy intensity and its spatial linkages: 1988–2007," Energy Policy, Elsevier, vol. 45(C), pages 583-593.
  56. Ajayi, V. & Reiner, D., 2018. "European Industrial Energy Intensity: The Role of Innovation 1995-2009," Cambridge Working Papers in Economics 1835, Faculty of Economics, University of Cambridge.
  57. Guenter Lang, 2002. "Innovative Slowdown, Productivity Reversal? - Estimating the Impact of R&D on Technological Change," Discussion Paper Series 218, Universitaet Augsburg, Institute for Economics.
  58. Chai, Jingxia & Wu, Haitao & Hao, Yu, 2022. "Planned economic growth and controlled energy demand: How do regional growth targets affect energy consumption in China?," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
  59. Marek Antosiewicz & Piotr Lewandowski & Jan Witajewski-Baltvilks, 2016. "Input vs. Output Taxation—A DSGE Approach to Modelling Resource Decoupling," Sustainability, MDPI, Open Access Journal, vol. 8(4), pages 1-17, April.
  60. Gamtessa, Samuel & Olani, Adugna Berhanu, 2018. "Energy price, energy efficiency, and capital productivity: Empirical investigations and policy implications," Energy Economics, Elsevier, vol. 72(C), pages 650-666.
  61. Alexander Melnik & Irina Naoumova & Kirill Ermolaev & Jerome Katrichis, 2021. "Driving Innovation through Energy Efficiency: A Russian Regional Analysis," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
  62. Baker, Erin & Clarke, Leon & Shittu, Ekundayo, 2008. "Technical change and the marginal cost of abatement," Energy Economics, Elsevier, vol. 30(6), pages 2799-2816, November.
  63. Pan, Xiuzhen & Wei, Zixiang & Han, Botang & Shahbaz, Muhammad, 2021. "The heterogeneous impacts of interregional green technology spillover on energy intensity in China," Energy Economics, Elsevier, vol. 96(C).
  64. Bretschger, Lucas, 2005. "Economics of technological change and the natural environment: How effective are innovations as a remedy for resource scarcity?," Ecological Economics, Elsevier, vol. 54(2-3), pages 148-163, August.
  65. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
  66. Kyunam Kim & Eunnyeong Heo & Yeonbae Kim, 2017. "Dynamic Policy Impacts on a Technological-Change System of Renewable Energy: An Empirical Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(2), pages 205-236, February.
  67. Bointner, Raphael, 2014. "Innovation in the energy sector: Lessons learnt from R&D expenditures and patents in selected IEA countries," Energy Policy, Elsevier, vol. 73(C), pages 733-747.
  68. Drosdowski, Thomas, 2006. "On the Link Between Democracy and Environment," Hannover Economic Papers (HEP) dp-355, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
  69. Zhangsheng Liu & Liuqingqing Yang & Liqin Fan, 2021. "Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
  70. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
  71. Zdenka Myslikova & Amy Jaffe & Kelly Sims Gallagher, 2022. "Shielding and expanding Mission Innovation," Nature Energy, Nature, vol. 7(9), pages 779-781, September.
  72. Po-Chin Wu & Shiao-Yen Liu & Sheng-Chieh Pan, 2014. "Nonlinear relationship between health care expenditure and its determinants: a panel smooth transition regression model," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 41(4), pages 713-729, November.
  73. Okay, Nesrin & Konukman, Alp Er S. & Akman, Ugur, 2009. "Analysis of Innovation and Energy Profiles in the Turkish Manufacturing Sector," MPRA Paper 16344, University Library of Munich, Germany.
  74. Valeria Costantini & Francesco Gracceva, 2004. "Oil Security Short- and Long-Term Policies," Working Papers 2004.115, Fondazione Eni Enrico Mattei.
  75. Xavier Labandeira & José María Labeaga & Miguel Rodríguez, 2008. "The Costs of Kyoto Adjustments for Spanish Households," Working Papers 2008-02, FEDEA.
  76. Zarepour, Zahra & Wagner, Natascha, 2023. "How manufacturing firms respond to energy subsidy reforms? An impact assessment of the Iranian Energy Subsidy Reform," Energy Economics, Elsevier, vol. 124(C).
  77. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "The Effect of Renewable Energy Development on Carbon Emission Reduction: An Empirical Analysis for the EU-15 Countries," IZA Discussion Papers 7989, Institute of Labor Economics (IZA).
  78. Schafer, Andreas, 2005. "Structural change in energy use," Energy Policy, Elsevier, vol. 33(4), pages 429-437, March.
  79. Kemfert, Claudia, 2005. "Induced technological change in a multi-regional, multi-sectoral, integrated assessment model (WIAGEM): Impact assessment of climate policy strategies," Ecological Economics, Elsevier, vol. 54(2-3), pages 293-305, August.
  80. David Popp, 2003. "Lessons from Patents: Using Patents To Measure Technological Change in Environmental Models," NBER Working Papers 9978, National Bureau of Economic Research, Inc.
  81. Amoako, Samuel & Andoh, Francis Kwaw & Asmah, Emmanuel Ekow, 2023. "Technological advancement, sectoral growth, and electricity consumption in Ghana," Energy, Elsevier, vol. 263(PB).
  82. Adam B. Jaffe & Richard G. Newell & Robert N. Stavins, 2004. "Technology Policy for Energy and the Environment," NBER Chapters, in: Innovation Policy and the Economy, Volume 4, pages 35-68, National Bureau of Economic Research, Inc.
  83. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
  84. Jakeman, Guy & Hanslow, Kevin & Hinchy, Mike & Fisher, Brian S. & Woffenden, Kate, 2004. "Induced innovations and climate change policy," Energy Economics, Elsevier, vol. 26(6), pages 937-960, November.
  85. Popp, David, 2006. "ENTICE-BR: The effects of backstop technology R&D on climate policy models," Energy Economics, Elsevier, vol. 28(2), pages 188-222, March.
  86. Andreas Freytag & Leo Wangler, 2008. "Strategic Trade Policy als Response to Climate Change? The Political Economy of Climate Policy," Jena Economics Research Papers 2008-001, Friedrich-Schiller-University Jena.
  87. Teng, Mingming & Shen, Minghao, 2023. "Fintech and energy efficiency: Evidence from OECD countries," Resources Policy, Elsevier, vol. 82(C).
  88. Baker, Erin & Shittu, Ekundayo, 2008. "Uncertainty and endogenous technical change in climate policy models," Energy Economics, Elsevier, vol. 30(6), pages 2817-2828, November.
  89. Steinbuks, Jevgenijs & Narayanan, Badri G., 2015. "Fossil fuel producing economies have greater potential for industrial interfuel substitution," Energy Economics, Elsevier, vol. 47(C), pages 168-177.
  90. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris, 2021. "R&D expenditure and energy consumption in OECD nations," Energy Economics, Elsevier, vol. 100(C).
  91. Bruns, Stephan B. & Kalthaus, Martin, 2020. "Flexibility in the selection of patent counts: Implications for p-hacking and evidence-based policymaking," Research Policy, Elsevier, vol. 49(1).
  92. Sergey Kortov & Dmitry Shulgin & Dmitrii Tolmachev & Anastassiya Yegarmina, 2017. "Technology Trends Analysis Using Patent Landscaping," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(3), pages 935-947.
  93. Assi, Ala Fathi & Zhakanova Isiksal, Aliya & Tursoy, Turgut, 2021. "Renewable energy consumption, financial development, environmental pollution, and innovations in the ASEAN + 3 group: Evidence from (P-ARDL) model," Renewable Energy, Elsevier, vol. 165(P1), pages 689-700.
  94. Wurlod, Jules-Daniel & Noailly, Joëlle, 2018. "The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries," Energy Economics, Elsevier, vol. 71(C), pages 47-61.
  95. Chaudhry, Sajid M. & Shafiullah, Muhammad, 2021. "Does culture affect energy poverty? Evidence from a cross-country analysis," Energy Economics, Elsevier, vol. 102(C).
  96. Kim, Kyunam & Kim, Yeonbae, 2015. "Role of policy in innovation and international trade of renewable energy technology: Empirical study of solar PV and wind power technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 717-727.
  97. Jun Liu & Yu Qian & Yuanjun Yang & Zhidan Yang, 2022. "Can Artificial Intelligence Improve the Energy Efficiency of Manufacturing Companies? Evidence from China," IJERPH, MDPI, vol. 19(4), pages 1-18, February.
  98. Richard G. Newell, 2011. "The Energy Innovation System: A Historical Perspective," NBER Chapters, in: Accelerating Energy Innovation: Insights from Multiple Sectors, pages 25-47, National Bureau of Economic Research, Inc.
  99. Weber, Michael & Barth, Volker & Hasselmann, Klaus, 2005. "A multi-actor dynamic integrated assessment model (MADIAM) of induced technological change and sustainable economic growth," Ecological Economics, Elsevier, vol. 54(2-3), pages 306-327, August.
  100. Hu, Kexiang & Sinha, Avik & Tan, Zhixiong & Shah, Muhammad Ibrahim & Abbas, Shujaat, 2022. "Achieving energy transition in OECD economies: Discovering the moderating roles of environmental governance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  101. David Grover, 2012. "Knowledge versus technique in SO2-saving technological change: A comparative test using quantile regression with implications for greenhouse gas compliance," GRI Working Papers 99, Grantham Research Institute on Climate Change and the Environment.
  102. Adam Jaffe & Richard Newell & Robert Stavins, 2002. "Environmental Policy and Technological Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 41-70, June.
  103. Huang, Junbing & Chen, Xiang & Cai, Xiaochen & Zou, Hong, 2021. "Assessing the impact of energy-saving R&D on China’s energy consumption: Evidence from dynamic spatial panel model," Energy, Elsevier, vol. 218(C).
  104. Popp, David, 2006. "Innovation in climate policy models: Implementing lessons from the economics of R&D," Energy Economics, Elsevier, vol. 28(5-6), pages 596-609, November.
  105. Sue Wing, Ian, 2008. "Explaining the declining energy intensity of the U.S. economy," Resource and Energy Economics, Elsevier, vol. 30(1), pages 21-49, January.
  106. Manel Kamoun & Ines Abdelkafi & Abdelfetah Ghorbel, 2020. "Does Renewable Energy Technologies and Poverty Affect the Sustainable Growth in Emerging Countries?," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 11(3), pages 865-887, September.
  107. Nyga-Łukaszewska Honorata, 2016. "Selected Issues in Innovation in the Energy Industry. The Case of Poland," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 50(1), pages 100-112, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.