IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i4p548-d95055.html
   My bibliography  Save this article

Impacts of Low-Carbon Innovation and Its Heterogeneous Components on CO 2 Emissions

Author

Listed:
  • Zheming Yan

    (International Business School, Shaanxi Normal University, Xi’an 710119, China
    School of Finance and Economics, Xi’an Jiaotong University, Xi’an 710061, China)

  • Lan Yi

    (International Business School, Shaanxi Normal University, Xi’an 710119, China)

  • Kerui Du

    (Center for Economic Research, Shandong University, Jinan 250100, China)

  • Zhiming Yang

    (Donlinks School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China)

Abstract

This paper aims to investigate the impact of low-carbon innovation on CO 2 emissions. Using patent statistics, we measured low-carbon innovations for 15 major economies during the period of 1992–2012. Then, we classified low-carbon technology into clean and gray technology according to the patent classification system. Following the empirical Environmental Kuznets Curve (EKC) framework, we explored the effects of low-carbon innovation and its components on CO 2 emissions. We did not find any evidence of significant influence of low-carbon innovation. Through further estimations, a significantly negative effect of clean innovation was found while the effect of gray innovation is not clear. Heterogeneous impacts within low-carbon technology provide an explanation for the insignificant impact of low-carbon innovation.

Suggested Citation

  • Zheming Yan & Lan Yi & Kerui Du & Zhiming Yang, 2017. "Impacts of Low-Carbon Innovation and Its Heterogeneous Components on CO 2 Emissions," Sustainability, MDPI, vol. 9(4), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:4:p:548-:d:95055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/4/548/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/4/548/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    2. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
    3. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    4. Wang, Zhaohua & Yang, Zhongmin & Zhang, Yixiang & Yin, Jianhua, 2012. "Energy technology patents–CO2 emissions nexus: An empirical analysis from China," Energy Policy, Elsevier, vol. 42(C), pages 248-260.
    5. Robert C. Feenstra & Robert Inklaar & Marcel P. Timmer, 2015. "The Next Generation of the Penn World Table," American Economic Review, American Economic Association, vol. 105(10), pages 3150-3182, October.
    6. Valeria Costantini & Francesco Crespi & Giovanni Marin & Elena Paglialunga, 2016. "Eco-innovation, sustainable supply chains and environmental performance in European industries," LEM Papers Series 2016/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    7. Yin, Jianhua & Zheng, Mingzheng & Chen, Jian, 2015. "The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China," Energy Policy, Elsevier, vol. 77(C), pages 97-108.
    8. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Haščič & Nick Johnstone & Yann Ménière, 2011. "Invention and Transfer of Climate Change--Mitigation Technologies: A Global Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 109-130, Winter.
    9. Werner Antweiler & Brian R. Copeland & M. Scott Taylor, 2001. "Is Free Trade Good for the Environment?," American Economic Review, American Economic Association, vol. 91(4), pages 877-908, September.
    10. Martínez-Zarzoso, Inmaculada & Maruotti, Antonello, 2011. "The impact of urbanization on CO2 emissions: Evidence from developing countries," Ecological Economics, Elsevier, vol. 70(7), pages 1344-1353, May.
    11. Stern, David I., 2004. "The Rise and Fall of the Environmental Kuznets Curve," World Development, Elsevier, vol. 32(8), pages 1419-1439, August.
    12. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    13. Picazo-Tadeo, Andrés J. & Castillo-Giménez, Juana & Beltrán-Esteve, Mercedes, 2014. "An intertemporal approach to measuring environmental performance with directional distance functions: Greenhouse gas emissions in the European Union," Ecological Economics, Elsevier, vol. 100(C), pages 173-182.
    14. Ghisetti, Claudia & Quatraro, Francesco, 2017. "Green Technologies and Environmental Productivity: A Cross-sectoral Analysis of Direct and Indirect Effects in Italian Regions," Ecological Economics, Elsevier, vol. 132(C), pages 1-13.
    15. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    16. Ivan Haščič & Jérôme Silva & Nick Johnstone, 2015. "The Use of Patent Statistics for International Comparisons and Analysis of Narrow Technological Fields," OECD Science, Technology and Industry Working Papers 2015/5, OECD Publishing.
    17. Cole, Matthew A. & Elliott, Robert J.R. & Okubo, Toshihiro & Zhou, Ying, 2013. "The carbon dioxide emissions of firms: A spatial analysis," Journal of Environmental Economics and Management, Elsevier, vol. 65(2), pages 290-309.
    18. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    19. Zhang, Ning & Wang, Bing & Liu, Zhu, 2016. "Carbon emissions dynamics, efficiency gains, and technological innovation in China's industrial sectors," Energy, Elsevier, vol. 99(C), pages 10-19.
    20. Saunders, Harry D., 2013. "Historical evidence for energy efficiency rebound in 30 US sectors and a toolkit for rebound analysts," Technological Forecasting and Social Change, Elsevier, vol. 80(7), pages 1317-1330.
    21. David Popp, 2012. "The Role of Technological Change in Green Growth," NBER Working Papers 18506, National Bureau of Economic Research, Inc.
    22. Carrión-Flores, Carmen E. & Innes, Robert, 2010. "Environmental innovation and environmental performance," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 27-42, January.
    23. Gilli, Marianna & Mancinelli, Susanna & Mazzanti, Massimiliano, 2014. "Innovation complementarity and environmental productivity effects: Reality or delusion? Evidence from the EU," Ecological Economics, Elsevier, vol. 103(C), pages 56-67.
    24. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    25. de Rassenfosse, Gaétan & Dernis, Hélène & Guellec, Dominique & Picci, Lucio & van Pottelsberghe de la Potterie, Bruno, 2013. "The worldwide count of priority patents: A new indicator of inventive activity," Research Policy, Elsevier, vol. 42(3), pages 720-737.
    26. Goldin,Ian & Winters,L. Alan (ed.), 1995. "The Economics of Sustainable Development," Cambridge Books, Cambridge University Press, number 9780521469579, January.
    27. Antoine Dechezleprêtre & Ralf Martin & Myra Mohnen, "undated". "Knowledge spillovers from clean and dirty technologies: a patent citation analysis," SIMPATIC Working Papers 954, Bruegel.
    28. repec:bre:wpaper:954 is not listed on IDEAS
    29. Cole, Matthew A. & Elliott, Robert J.R. & Shimamoto, Kenichi, 2005. "Industrial characteristics, environmental regulations and air pollution: an analysis of the UK manufacturing sector," Journal of Environmental Economics and Management, Elsevier, vol. 50(1), pages 121-143, July.
    30. Popp, David, 2012. "The role of technological change in green growth," Policy Research Working Paper Series 6239, The World Bank.
    31. Declan Conway & Antoine Dechezleprêtre & Ivan Haščič & Nick Johnstone, 2015. "Invention and Diffusion of Water Supply and Water Efficiency Technologies: Insights from a Global Patent Dataset," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 1-34, December.
    32. Zhou, P. & Ang, B.W., 2008. "Decomposition of aggregate CO2 emissions: A production-theoretical approach," Energy Economics, Elsevier, vol. 30(3), pages 1054-1067, May.
    33. Wang, H. & Zhou, P. & Zhou, D.Q., 2013. "Scenario-based energy efficiency and productivity in China: A non-radial directional distance function analysis," Energy Economics, Elsevier, vol. 40(C), pages 795-803.
    34. Catalina Martinez, 2010. "Insight into Different Types of Patent Families," OECD Science, Technology and Industry Working Papers 2010/2, OECD Publishing.
    35. Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
    36. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    37. Zhou, Xiaoyan & Zhang, Jie & Li, Junpeng, 2013. "Industrial structural transformation and carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 57(C), pages 43-51.
    38. Costantini, Valeria & Mazzanti, Massimiliano & Montini, Anna, 2013. "Environmental performance, innovation and spillovers. Evidence from a regional NAMEA," Ecological Economics, Elsevier, vol. 89(C), pages 101-114.
    39. Richard T. Carson, 2010. "The Environmental Kuznets Curve: Seeking Empirical Regularity and Theoretical Structure," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(1), pages 3-23, Winter.
    40. Du, Limin & Wei, Chu & Cai, Shenghua, 2012. "Economic development and carbon dioxide emissions in China: Provincial panel data analysis," China Economic Review, Elsevier, vol. 23(2), pages 371-384.
    41. Popp, David C., 2001. "The effect of new technology on energy consumption," Resource and Energy Economics, Elsevier, vol. 23(3), pages 215-239, July.
    42. Tetsuya Tsurumi & Shunsuke Managi, 2010. "Decomposition of the environmental Kuznets curve: scale, technique, and composition effects," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 11(1), pages 19-36, February.
    43. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    44. Ivan Haščič & Mauro Migotto, 2015. "Measuring environmental innovation using patent data," OECD Environment Working Papers 89, OECD Publishing.
    45. Kenneth Gillingham & James Sweeney, 2012. "Barriers To Implementing Low-Carbon Technologies," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongzhong Fan & Md Ismail Hossain & Mollah Aminul Islam & Yassin Elshain Yahia, 2019. "The Impact of Trade, Technology and Growth on Environmental Deterioration of China and India," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 9(1), pages 1-29, January.
    2. Yuguo Jiang & Weide Chun & Ye Yang, 2018. "The Effects of External Relations Network on Low-Carbon Technology Innovation: Based on the Study of Knowledge Absorptive Capacity," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    3. Yıldırım, Durmuş Çağrı & Esen, Ömer & Yıldırım, Seda, 2022. "The nonlinear effects of environmental innovation on energy sector-based carbon dioxide emissions in OECD countries," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    4. Ostadzad, Ali Hossein, 2022. "Innovation and carbon emissions: Fixed-effects panel threshold model estimation for renewable energy," Renewable Energy, Elsevier, vol. 198(C), pages 602-617.
    5. Song, Yan & Zhu, Jing & Yue, Qian & Zhang, Ming & Wang, Longke, 2023. "Industrial agglomeration, technological innovation and air pollution: Empirical evidence from 277 prefecture-level cities in China," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 240-252.
    6. Yue, Xiao-Guang & Lu, Changyi & Pi, Saiqi & Huang, Hongyu & Manta, Otilia, 2024. "The role of mineral resources, sustainable finance, and innovation in promoting sustainable development under the IRA 2022," Resources Policy, Elsevier, vol. 90(C).
    7. Du, Kerui & Li, Jianglong, 2019. "Towards a green world: How do green technology innovations affect total-factor carbon productivity," Energy Policy, Elsevier, vol. 131(C), pages 240-250.
    8. Junwu Wang & Yinghui Song & Mao Li & Cong Yuan & Feng Guo, 2022. "Study on Low-Carbon Technology Innovation Strategies through Government–University–Enterprise Cooperation under Carbon Trading Policy," Sustainability, MDPI, vol. 14(15), pages 1-26, July.
    9. Tomáš Formánek & Radek Tahal, 2020. "Socio-Demographic Aspects Affecting Individual Stances towards Electric and Hybrid Vehicles in the Czech Republic," Central European Business Review, Prague University of Economics and Business, vol. 2020(2), pages 78-93.
    10. Razzaq, Asif & Sharif, Arshian & Ozturk, Ilhan & Skare, Marinko, 2022. "Inclusive infrastructure development, green innovation, and sustainable resource management: Evidence from China’s trade-adjusted material footprints," Resources Policy, Elsevier, vol. 79(C).
    11. Liexun Yang & Peng Zhou & Ning Zhang, 2017. "A Review of Low-Carbon Transformation and Energy Innovation Issues in China," Sustainability, MDPI, vol. 9(7), pages 1-6, July.
    12. Xin, Daleng & Ahmad, Manzoor & Lei, Hong & Khattak, Shoukat Iqbal, 2021. "Do innovation in environmental-related technologies asymmetrically affect carbon dioxide emissions in the United States?," Technology in Society, Elsevier, vol. 67(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Kerui & Li, Jianglong, 2019. "Towards a green world: How do green technology innovations affect total-factor carbon productivity," Energy Policy, Elsevier, vol. 131(C), pages 240-250.
    2. Yan, Zheming & Du, Keru & Yang, Zhiming & Deng, Min, 2017. "Convergence or divergence? Understanding the global development trend of low-carbon technologies," Energy Policy, Elsevier, vol. 109(C), pages 499-509.
    3. Zheming Yan & Rui Shi & Zhiming Yang, 2018. "ICT Development and Sustainable Energy Consumption: A Perspective of Energy Productivity," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    4. Yan, Zheming & Zou, Baoling & Du, Kerui & Li, Ke, 2020. "Do renewable energy technology innovations promote China's green productivity growth? Fresh evidence from partially linear functional-coefficient models," Energy Economics, Elsevier, vol. 90(C).
    5. Lin, Boqiang & Li, Zheng, 2022. "Towards world's low carbon development: The role of clean energy," Applied Energy, Elsevier, vol. 307(C).
    6. Wendler, Tobias & Töbelmann, Daniel & Günther, Jutta, 2021. "Natural resources and technology - on the mitigating effect of green tech," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242416, Verein für Socialpolitik / German Economic Association.
    7. Yan, Zheming & Sun, Zao & Shi, Rui & Zhao, Minjuan, 2023. "Smart city and green development: Empirical evidence from the perspective of green technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    8. Tobias Wendler, 2019. "About the Relationship Between Green Technology and Material Usage," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 1383-1423, November.
    9. Bruns, Stephan B. & Kalthaus, Martin, 2020. "Flexibility in the selection of patent counts: Implications for p-hacking and evidence-based policymaking," Research Policy, Elsevier, vol. 49(1).
    10. Ghisetti, Claudia & Quatraro, Francesco, 2017. "Green Technologies and Environmental Productivity: A Cross-sectoral Analysis of Direct and Indirect Effects in Italian Regions," Ecological Economics, Elsevier, vol. 132(C), pages 1-13.
    11. Tobias Wendler & Daniel Töbelmann & Jutta Günther, 2019. "Natural resources and technology - on the mitigating effect of green tech," Bremen Papers on Economics & Innovation 1905, University of Bremen, Faculty of Business Studies and Economics.
    12. David Popp, 2019. "Environmental policy and innovation: a decade of research," CESifo Working Paper Series 7544, CESifo.
    13. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
    14. Valeria Costantini & Francesco Crespi & Giovanni Marin & Elena Paglialunga, 2016. "Eco-innovation, sustainable supply chains and environmental performance in European industries," LEM Papers Series 2016/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    15. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    16. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.
    17. Lööf, Hans & Perez, Luis & Baum, Christopher F, 2018. "Directed Technical Change in Clean Energy: Evidence from the Solar Industry," Working Paper Series in Economics and Institutions of Innovation 470, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    18. Lazkano, Itziar & Nøstbakken, Linda & Pelli, Martino, 2017. "From fossil fuels to renewables: The role of electricity storage," European Economic Review, Elsevier, vol. 99(C), pages 113-129.
    19. Xu, Le & Yang, Lili & Li, Ding & Shao, Shuai, 2023. "Asymmetric effects of heterogeneous environmental standards on green technology innovation: Evidence from China," Energy Economics, Elsevier, vol. 117(C).
    20. Lazkano, Itziar & Pham, Linh, 2016. "Do Fossil fuel Taxes Promote Innovation in Renewable Electricity Generation?," Discussion Paper Series in Economics 16/2016, Norwegian School of Economics, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:4:p:548-:d:95055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.