My bibliography
Save this item
Hybrid machine intelligent SVR variants for wind forecasting and ramp events
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Junwei Fu & Yuna Ni & Yuming Ma & Jian Zhao & Qiuyi Yang & Shiyi Xu & Xiang Zhang & Yuhua Liu, 2023. "A Visualization-Based Ramp Event Detection Model for Wind Power Generation," Energies, MDPI, vol. 16(3), pages 1-16, January.
- Yajie Wu & Yuan Chen & Yong Tian, 2022. "Incorporating Empirical Orthogonal Function Analysis into Machine Learning Models for Streamflow Prediction," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
- Jabeur, Sami Ben & Ballouk, Houssein & Mefteh-Wali, Salma & Omri, Anis, 2022.
"Forecasting the macrolevel determinants of entrepreneurial opportunities using artificial intelligence models,"
Technological Forecasting and Social Change, Elsevier, vol. 175(C).
- Sami Ben Jabeur & Houssein Ballouk & Salma Mefteh-Wali & Anis Omri, 2021. "Forecasting the macrolevel determinants of entrepreneurial opportunities using artificial intelligence models," Post-Print hal-03442122, HAL.
- Qu, Yinpeng & Xu, Jian & Sun, Yuanzhang & Liu, Dan, 2021. "A temporal distributed hybrid deep learning model for day-ahead distributed PV power forecasting," Applied Energy, Elsevier, vol. 304(C).
- Hu, Shuai & Xiang, Yue & Zhang, Hongcai & Xie, Shanyi & Li, Jianhua & Gu, Chenghong & Sun, Wei & Liu, Junyong, 2021. "Hybrid forecasting method for wind power integrating spatial correlation and corrected numerical weather prediction," Applied Energy, Elsevier, vol. 293(C).
- Yingjie Zhu & Jiageng Ma & Fangqing Gu & Jie Wang & Zhijuan Li & Youyao Zhang & Jiani Xu & Yifan Li & Yiwen Wang & Xiangqun Yang, 2023. "Price Prediction of Bitcoin Based on Adaptive Feature Selection and Model Optimization," Mathematics, MDPI, vol. 11(6), pages 1-22, March.
- Lu, Hongfang & Ma, Xin & Huang, Kun & Azimi, Mohammadamin, 2020. "Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
- Juan D. Borrero & Jesús Mariscal & Alfonso Vargas-Sánchez, 2022. "A New Predictive Algorithm for Time Series Forecasting Based on Machine Learning Techniques: Evidence for Decision Making in Agriculture and Tourism Sectors," Stats, MDPI, vol. 5(4), pages 1-14, November.
- Zhao, Beizhen & He, Xin & Ran, Shaolin & Zhang, Yong & Cheng, Cheng, 2024. "Spatial correlation learning based on graph neural network for medium-term wind power forecasting," Energy, Elsevier, vol. 296(C).
- Asmamaw Sewnet & Baseem Khan & Issaias Gidey & Om Prakash Mahela & Adel El-Shahat & Almoataz Y. Abdelaziz, 2022. "Mitigating Generation Schedule Deviation of Wind Farm Using Battery Energy Storage System," Energies, MDPI, vol. 15(5), pages 1-26, February.
- Wu, Zhou & Zeng, Shaoxiong & Jiang, Ruiqi & Zhang, Haoran & Yang, Zhile, 2023. "Explainable temporal dependence in multi-step wind power forecast via decomposition based chain echo state networks," Energy, Elsevier, vol. 270(C).
- Zhu, Huixing & Xu, Tianfu & Xin, Xin & Yuan, Yilong & Feng, Guanhong, 2022. "Numerical investigation of the three-phase layer production performance of an offshore natural gas hydrate trial production," Energy, Elsevier, vol. 257(C).
- Yang, Mao & Che, Runqi & Yu, Xinnan & Su, Xin, 2024. "Dual NWP wind speed correction based on trend fusion and fluctuation clustering and its application in short-term wind power prediction," Energy, Elsevier, vol. 302(C).
- Dhiman, Harsh S. & Deb, Dipankar & Foley, Aoife M., 2020. "Bilateral Gaussian Wake Model Formulation for Wind Farms: A Forecasting based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
- Henrik Zsiborács & Gábor Pintér & András Vincze & Nóra Hegedűsné Baranyai, 2022. "Wind Power Generation Scheduling Accuracy in Europe: An Overview of ENTSO-E Countries," Sustainability, MDPI, vol. 14(24), pages 1-58, December.
- Hu, Jiaxiang & Hu, Weihao & Cao, Di & Huang, Yuehui & Chen, Jianjun & Li, Yahe & Chen, Zhe & Blaabjerg, Frede, 2024. "Bayesian averaging-enabled transfer learning method for probabilistic wind power forecasting of newly built wind farms," Applied Energy, Elsevier, vol. 355(C).
- Niu, Zhewen & Yu, Zeyuan & Tang, Wenhu & Wu, Qinghua & Reformat, Marek, 2020. "Wind power forecasting using attention-based gated recurrent unit network," Energy, Elsevier, vol. 196(C).
- Sewdien, V.N. & Preece, R. & Torres, J.L. Rueda & Rakhshani, E. & van der Meijden, M., 2020. "Assessment of critical parameters for artificial neural networks based short-term wind generation forecasting," Renewable Energy, Elsevier, vol. 161(C), pages 878-892.
- Zucatelli, P.J. & Nascimento, E.G.S. & Santos, A.Á.B. & Arce, A.M.G. & Moreira, D.M., 2021. "An investigation on deep learning and wavelet transform to nowcast wind power and wind power ramp: A case study in Brazil and Uruguay," Energy, Elsevier, vol. 230(C).
- Lu, Peng & Yang, Jianbin & Ye, Lin & Zhang, Ning & Wang, Yaqing & Di, Jingyi & Gao, Ze & Wang, Cheng & Liu, Mingyang, 2024. "A novel adaptively combined model based on induced ordered weighted averaging for wind power forecasting," Renewable Energy, Elsevier, vol. 226(C).
- Changfang Guo & Zhen Yang & Shen Li & Jinfu Lou, 2020. "Predicting the Water-Conducting Fracture Zone (WCFZ) Height Using an MPGA-SVR Approach," Sustainability, MDPI, vol. 12(5), pages 1-15, February.
- Marania Hopuare & Tao Manni & Victoire Laurent & Keitapu Maamaatuaiahutapu, 2022. "Investigating Wind Energy Potential in Tahiti, French Polynesia," Energies, MDPI, vol. 15(6), pages 1-13, March.
- Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
- Ye, Lin & Li, Yilin & Pei, Ming & Zhao, Yongning & Li, Zhuo & Lu, Peng, 2022. "A novel integrated method for short-term wind power forecasting based on fluctuation clustering and history matching," Applied Energy, Elsevier, vol. 327(C).
- Brian Loza & Luis I. Minchala & Danny Ochoa-Correa & Sergio Martinez, 2024. "Grid-Friendly Integration of Wind Energy: A Review of Power Forecasting and Frequency Control Techniques," Sustainability, MDPI, vol. 16(21), pages 1-22, November.
- Hu, Jianming & Zhang, Liping & Tang, Jingwei & Liu, Zhi, 2023. "A novel transformer ordinal regression network with label diversity for wind power ramp events forecasting," Energy, Elsevier, vol. 280(C).
- Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
- Dhiman, Harsh S. & Deb, Dipankar, 2020. "Wake management based life enhancement of battery energy storage system for hybrid wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
- Dhiman, Harsh S. & Deb, Dipankar, 2020. "Fuzzy TOPSIS and fuzzy COPRAS based multi-criteria decision making for hybrid wind farms," Energy, Elsevier, vol. 202(C).
- Nathan Oaks Farrar & Mohd Hasan Ali & Dipankar Dasgupta, 2023. "Artificial Intelligence and Machine Learning in Grid Connected Wind Turbine Control Systems: A Comprehensive Review," Energies, MDPI, vol. 16(3), pages 1-25, February.
- Tianze Lan & Kittisak Jermsittiparsert & Sara T. Alrashood & Mostafa Rezaei & Loiy Al-Ghussain & Mohamed A. Mohamed, 2021. "An Advanced Machine Learning Based Energy Management of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand," Energies, MDPI, vol. 14(3), pages 1-25, January.
- Che, Jinxing & Yuan, Fang & Deng, Dewen & Jiang, Zheyong, 2023. "Ultra-short-term probabilistic wind power forecasting with spatial-temporal multi-scale features and K-FSDW based weight," Applied Energy, Elsevier, vol. 331(C).