IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v33y2008i7p1544-1557.html
   My bibliography  Save this item

The utility of energy storage to improve the economics of wind–diesel power plants in Canada

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Khan, Agha Salman M. & Verzijlbergh, Remco A. & Sakinci, Ozgur Can & De Vries, Laurens J., 2018. "How do demand response and electrical energy storage affect (the need for) a capacity market?," Applied Energy, Elsevier, vol. 214(C), pages 39-62.
  2. Velo, R. & Osorio, L. & Fernández, M.D. & Rodríguez, M.R., 2014. "An economic analysis of a stand-alone and grid-connected cattle farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 883-890.
  3. Ibrahim, H. & Younès, R. & Basbous, T. & Ilinca, A. & Dimitrova, M., 2011. "Optimization of diesel engine performances for a hybrid wind–diesel system with compressed air energy storage," Energy, Elsevier, vol. 36(5), pages 3079-3091.
  4. Nyamdash, Batsaikhan & Denny, Eleanor, 2013. "The impact of electricity storage on wholesale electricity prices," Energy Policy, Elsevier, vol. 58(C), pages 6-16.
  5. Bhattarai, Prasid Ram & Thompson, Shirley, 2016. "Optimizing an off-grid electrical system in Brochet, Manitoba, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 709-719.
  6. Kraan, Oscar & Kramer, Gert Jan & Nikolic, Igor & Chappin, Emile & Koning, Vinzenz, 2019. "Why fully liberalised electricity markets will fail to meet deep decarbonisation targets even with strong carbon pricing," Energy Policy, Elsevier, vol. 131(C), pages 99-110.
  7. Basbous, Tammam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2012. "A new hybrid pneumatic combustion engine to improve fuel consumption of wind–Diesel power system for non-interconnected areas," Applied Energy, Elsevier, vol. 96(C), pages 459-476.
  8. Rahmanifard, Hamid & Plaksina, Tatyana, 2019. "Hybrid compressed air energy storage, wind and geothermal energy systems in Alberta: Feasibility simulation and economic assessment," Renewable Energy, Elsevier, vol. 143(C), pages 453-470.
  9. Konstantinos Karanasios & Paul Parker, 2018. "Explaining the Diffusion of Renewable Electricity Technologies in Canadian Remote Indigenous Communities through the Technological Innovation System Approach," Sustainability, MDPI, vol. 10(11), pages 1-28, October.
  10. Kazempour, S. Jalal & Moghaddam, M. Parsa & Haghifam, M.R. & Yousefi, G.R., 2009. "Electric energy storage systems in a market-based economy: Comparison of emerging and traditional technologies," Renewable Energy, Elsevier, vol. 34(12), pages 2630-2639.
  11. Basbous, Tammam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Optimal management of compressed air energy storage in a hybrid wind-pneumatic-diesel system for remote area's power generation," Energy, Elsevier, vol. 84(C), pages 267-278.
  12. Baek, Seoin & Park, Eunil & Kim, Min-Gil & Kwon, Sang Jib & Kim, Ki Joon & Ohm, Jay Y. & del Pobil, Angel P., 2016. "Optimal renewable power generation systems for Busan metropolitan city in South Korea," Renewable Energy, Elsevier, vol. 88(C), pages 517-525.
  13. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
  14. Giannoulis, E.D. & Haralambopoulos, D.A., 2011. "Distributed Generation in an isolated grid: Methodology of case study for Lesvos - Greece," Applied Energy, Elsevier, vol. 88(7), pages 2530-2540, July.
  15. Froese, Sarah & Kunz, Nadja C. & Ramana, M.V., 2020. "Too small to be viable? The potential market for small modular reactors in mining and remote communities in Canada," Energy Policy, Elsevier, vol. 144(C).
  16. William E., Lilley & Luke J., Reedman & Liam D., Wagner & Colin F., Alie & Anthony R., Szatow, 2012. "An economic evaluation of the potential for distributed energy in Australia," Energy Policy, Elsevier, vol. 51(C), pages 277-289.
  17. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
  18. Karanasios, Konstantinos & Parker, Paul, 2018. "Tracking the transition to renewable electricity in remote indigenous communities in Canada," Energy Policy, Elsevier, vol. 118(C), pages 169-181.
  19. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
  20. Youssef Benchaabane & Rosa Elvira Silva & Hussein Ibrahim & Adrian Ilinca & Ambrish Chandra & Daniel R. Rousse, 2019. "Computer Model for Financial, Environmental and Risk Analysis of a Wind–Diesel Hybrid System with Compressed Air Energy Storage," Energies, MDPI, vol. 12(21), pages 1-23, October.
  21. Mudasser, Muhammad & Yiridoe, Emmanuel K. & Corscadden, Kenneth, 2015. "Cost-benefit analysis of grid-connected wind–biogas hybrid energy production, by turbine capacity and site," Renewable Energy, Elsevier, vol. 80(C), pages 573-582.
  22. Batas-Bjelic, Ilija & Rajakovic, Nikola & Duic, Neven, 2017. "Smart municipal energy grid within electricity market," Energy, Elsevier, vol. 137(C), pages 1277-1285.
  23. Ibrahim, H. & Younès, R. & Ilinca, A. & Dimitrova, M. & Perron, J., 2010. "Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas," Applied Energy, Elsevier, vol. 87(5), pages 1749-1762, May.
  24. Manchester, Sebastian C. & Swan, Lukas G. & Groulx, Dominic, 2015. "Regenerative air energy storage for remote wind–diesel micro-grid communities," Applied Energy, Elsevier, vol. 137(C), pages 490-500.
  25. Rahimi, Ehsan & Rabiee, Abdorreza & Aghaei, Jamshid & Muttaqi, Kashem M. & Esmaeel Nezhad, Ali, 2013. "On the management of wind power intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 643-653.
  26. Cai, Wei & Li, Xing & Maleki, Akbar & Pourfayaz, Fathollah & Rosen, Marc A. & Alhuyi Nazari, Mohammad & Bui, Dieu Tien, 2020. "Optimal sizing and location based on economic parameters for an off-grid application of a hybrid system with photovoltaic, battery and diesel technology," Energy, Elsevier, vol. 201(C).
  27. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
  28. Mohammadali Kiehbadroudinezhad & Adel Merabet & Homa Hosseinzadeh-Bandbafha, 2022. "Review of Latest Advances and Prospects of Energy Storage Systems: Considering Economic, Reliability, Sizing, and Environmental Impacts Approach," Clean Technol., MDPI, vol. 4(2), pages 1-25, June.
  29. Batas Bjelic, Ilija & Ciric, Rade M., 2014. "Optimal distributed generation planning at a local level – A review of Serbian renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 79-86.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.