IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v26y2002i2p235-246.html
   My bibliography  Save this item

Using renewable energy technologies for domestic cooking in India: a methodology for potential estimation

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
  2. Chandrasekar, B. & Kandpal, Tara. C., 2007. "An opinion survey based assessment of renewable energy technology development in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 688-701, May.
  3. Anandajit Goswami & Kaushik Ranjan Bandyopadhyay & Preeti Singh & Amulya Gurtu, 2023. "Rural Energy Transition for Cooking in India—Revisiting the Drivers," Sustainability, MDPI, vol. 15(9), pages 1-21, May.
  4. Bansal, Mohit & Saini, R.P. & Khatod, D.K., 2013. "Development of cooking sector in rural areas in India—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 44-53.
  5. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional and community solar cooking in India using SK-23 and Scheffler solar cookers: A financial appraisal," Renewable Energy, Elsevier, vol. 120(C), pages 501-511.
  6. Purohit, Pallav, 2007. "Financial evaluation of renewable energy technologies for irrigation water pumping in India," Energy Policy, Elsevier, vol. 35(6), pages 3134-3144, June.
  7. Martínez, J. & Martí-Herrero, Jaime & Villacís, S. & Riofrio, A.J. & Vaca, D., 2017. "Analysis of energy, CO2 emissions and economy of the technological migration for clean cooking in Ecuador," Energy Policy, Elsevier, vol. 107(C), pages 182-187.
  8. Kumar, Atul & Kandpal, Tara C., 2007. "Renewable energy technologies for irrigation water pumping in India: A preliminary attempt towards potential estimation," Energy, Elsevier, vol. 32(5), pages 861-870.
  9. Saxena, Abhishek & Varun & Pandey, S.P. & Srivastav, G., 2011. "A thermodynamic review on solar box type cookers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3301-3318, August.
  10. Indora, Sunil & Kandpal, Tara C., 2019. "Financial appraisal of using Scheffler dish for steam based institutional solar cooking in India," Renewable Energy, Elsevier, vol. 135(C), pages 1400-1411.
  11. Pallav Purohit & Axel Michaelowa, 2008. "CDM potential of SPV lighting systems in India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(1), pages 23-46, January.
  12. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
  13. Pohekar, S.D. & Kumar, Dinesh & Ramachandran, M., 2005. "Dissemination of cooking energy alternatives in India--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(4), pages 379-393, August.
  14. Purohit, Pallav & Kandpal, Tara Chandra, 2007. "Techno-economics of biogas-based water pumping in India: An attempt to internalize CO2 emissions mitigation and other economic benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1208-1226, August.
  15. Prasanna, U.R. & Umanand, L., 2011. "Optimization and design of energy transport system for solar cooking application," Applied Energy, Elsevier, vol. 88(1), pages 242-251, January.
  16. Pillai, Indu R. & Banerjee, Rangan, 2009. "Renewable energy in India: Status and potential," Energy, Elsevier, vol. 34(8), pages 970-980.
  17. van Ruijven, Bas J. & van Vuuren, Detlef P. & de Vries, Bert J.M. & Isaac, Morna & van der Sluijs, Jeroen P. & Lucas, Paul L. & Balachandra, P., 2011. "Model projections for household energy use in India," Energy Policy, Elsevier, vol. 39(12), pages 7747-7761.
  18. Naik, Hardik & Baredar, Prashant & Kumar, Anil, 2017. "Medium temperature application of concentrated solar thermal technology: Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 369-378.
  19. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
  20. Prasanna, U.R. & Umanand, L., 2011. "Modeling and design of a solar thermal system for hybrid cooking application," Applied Energy, Elsevier, vol. 88(5), pages 1740-1755, May.
  21. Javier Mart nez-G mez & Javier Mart nez-G mez & Gonzalo Guerr n & Gonzalo Guerr n & A. J. Riofrio, 2017. "Analysis of the Plan Fronteras for Clean Cooking in Ecuador," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 135-145.
  22. Purohit, Pallav & Kandpal, Tara C., 2005. "Renewable energy technologies for irrigation water pumping in India: projected levels of dissemination, energy delivery and investment requirements using available diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(6), pages 592-607, December.
  23. Hiremath, R.B. & Shikha, S. & Ravindranath, N.H., 2007. "Decentralized energy planning; modeling and application--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 729-752, June.
  24. Lecuona, Antonio & Nogueira, José-Ignacio & Ventas, Rubén & Rodríguez-Hidalgo, María-del-Carmen & Legrand, Mathieu, 2013. "Solar cooker of the portable parabolic type incorporating heat storage based on PCM," Applied Energy, Elsevier, vol. 111(C), pages 1136-1146.
  25. Purohit, Ishan, 2010. "Testing of solar cookers and evaluation of instrumentation error," Renewable Energy, Elsevier, vol. 35(9), pages 2053-2064.
  26. Sarker, Swati Anindita & Wang, Shouyang & Adnan, K.M. Mehedi & Sattar, M. Nahid, 2020. "Economic feasibility and determinants of biogas technology adoption: Evidence from Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.