IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i9p2053-2064.html
   My bibliography  Save this article

Testing of solar cookers and evaluation of instrumentation error

Author

Listed:
  • Purohit, Ishan

Abstract

Solar cooking technologies have large potential in developing countries. Many of the solar cookers (particularly box type and parabolic concentrating type solar cookers) have been commercialized in different parts of the world. An effective quality control is essential for a large-scale dissemination of solar thermal technologies on the products being offered by the industry to the end users. For this, there is a need to establish test procedures and methodologies for developing performance characteristic parameters, which could provide an equitable basis for comparison of performances of the products. A comprehensive review of various test procedures of solar cookers has been undertaken in this study.

Suggested Citation

  • Purohit, Ishan, 2010. "Testing of solar cookers and evaluation of instrumentation error," Renewable Energy, Elsevier, vol. 35(9), pages 2053-2064.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:9:p:2053-2064
    DOI: 10.1016/j.renene.2010.02.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110000558
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.02.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chandrasekar, B. & Kandpal, Tara. C., 2007. "An opinion survey based assessment of renewable energy technology development in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 688-701, May.
    2. Kumar, Subodh & Kandpal, T.C. & Mullick, S.C., 1994. "Effect of wind on the thermal performance of a parabolloid concentrator solar cooker," Renewable Energy, Elsevier, vol. 4(3), pages 333-337.
    3. Sonune, A.V & Philip, S.K, 2003. "Development of a domestic concentrating cooker," Renewable Energy, Elsevier, vol. 28(8), pages 1225-1234.
    4. Kumar, Subodh & Kandpal, T.C. & Mullick, S.C., 1996. "Experimental test procedures for determination of the optical efficiency factor of a parabolloid concentrator solar cooker," Renewable Energy, Elsevier, vol. 7(2), pages 145-151.
    5. Ekechukwu, O.V & Ugwuoke, N.T, 2003. "Design and measured performance of a plane reflector augmented box-type solar-energy cooker," Renewable Energy, Elsevier, vol. 28(12), pages 1935-1952.
    6. El-Sebaii, A.A. & Domański, R. & Jaworski, M., 1994. "Experimental and theoretical investigation of a box-type solar cooker with multi-step inner reflectors," Energy, Elsevier, vol. 19(10), pages 1011-1021.
    7. Kumar, Subodh & Kandpal, T.C. & Mullick, S.C., 1993. "Heat losses from a paraboloid concentrator solar cooker: Experimental investigations on effect of reflector orientation," Renewable Energy, Elsevier, vol. 3(8), pages 871-876.
    8. Bakshi, Rakesh, 1998. "India's emergence as a global leader in renewable energy technologies," Renewable Energy, Elsevier, vol. 15(1), pages 107-113.
    9. Purohit, P & Kumar, A & Rana, S & Kandpal, T.C, 2002. "Using renewable energy technologies for domestic cooking in India: a methodology for potential estimation," Renewable Energy, Elsevier, vol. 26(2), pages 235-246.
    10. Wentzel, Marlett & Pouris, Anastassios, 2007. "The development impact of solar cookers: A review of solar cooking impact research in South Africa," Energy Policy, Elsevier, vol. 35(3), pages 1909-1919, March.
    11. Kumar, Subodh, 2005. "Estimation of design parameters for thermal performance evaluation of box-type solar cooker," Renewable Energy, Elsevier, vol. 30(7), pages 1117-1126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edmonds, Ian, 2018. "Low cost realisation of a high temperature solar cooker," Renewable Energy, Elsevier, vol. 121(C), pages 94-101.
    2. B C Anilkumar & Ranjith Maniyeri & S Anish, 2023. "Thermal performance assessment of a cylindrical box solar cooker fitted with decahedron outer reflector," Energy & Environment, , vol. 34(3), pages 493-516, May.
    3. Saxena, Abhishek & Varun & Pandey, S.P. & Srivastav, G., 2011. "A thermodynamic review on solar box type cookers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3301-3318, August.
    4. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    5. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    6. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Kumar, Naveen & Vishwanath, G. & Gupta, Anurag, 2011. "An exergy based test protocol for truncated pyramid type solar box cooker," Energy, Elsevier, vol. 36(9), pages 5710-5715.
    8. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    2. Saxena, Abhishek & Varun & Pandey, S.P. & Srivastav, G., 2011. "A thermodynamic review on solar box type cookers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3301-3318, August.
    3. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    4. Lahkar, Pranab J. & Samdarshi, S.K., 2010. "A review of the thermal performance parameters of box type solar cookers and identification of their correlations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1615-1621, August.
    5. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2012. "State of the art of solar cooking: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3776-3785.
    6. Al-Soud, Mohammed S. & Abdallah, Essam & Akayleh, Ali & Abdallah, Salah & Hrayshat, Eyad S., 2010. "A parabolic solar cooker with automatic two axes sun tracking system," Applied Energy, Elsevier, vol. 87(2), pages 463-470, February.
    7. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    8. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional and community solar cooking in India using SK-23 and Scheffler solar cookers: A financial appraisal," Renewable Energy, Elsevier, vol. 120(C), pages 501-511.
    9. Lahkar, Pranab J. & Bhamu, Rajesh K. & Samdarshi, S.K., 2012. "Enabling inter-cooker thermal performance comparison based on cooker opto-thermal ratio (COR)," Applied Energy, Elsevier, vol. 99(C), pages 491-495.
    10. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    11. Lecuona, Antonio & Nogueira, José-Ignacio & Ventas, Rubén & Rodríguez-Hidalgo, María-del-Carmen & Legrand, Mathieu, 2013. "Solar cooker of the portable parabolic type incorporating heat storage based on PCM," Applied Energy, Elsevier, vol. 111(C), pages 1136-1146.
    12. Kumar, Subodh, 2005. "Estimation of design parameters for thermal performance evaluation of box-type solar cooker," Renewable Energy, Elsevier, vol. 30(7), pages 1117-1126.
    13. Mahavar, S. & Rajawat, P. & Marwal, V.K. & Punia, R.C. & Dashora, P., 2013. "Modeling and on-field testing of a Solar Rice Cooker," Energy, Elsevier, vol. 49(C), pages 404-412.
    14. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Kumar, Subodh & Kandpal, T.C. & Mullick, S.C., 1996. "Experimental test procedures for determination of the optical efficiency factor of a parabolloid concentrator solar cooker," Renewable Energy, Elsevier, vol. 7(2), pages 145-151.
    16. Edmonds, Ian, 2018. "Low cost realisation of a high temperature solar cooker," Renewable Energy, Elsevier, vol. 121(C), pages 94-101.
    17. Al-Nehari, Hamoud A. & Mohammed, Mahmoud A. & Odhah, Abdulkarem A. & Al-attab, K.A. & Mohammed, Bakeel K. & Al-Habari, Abdulwahab M. & Al-Fahd, Nasr H., 2021. "Experimental and numerical analysis of tiltable box-type solar cooker with tracking mechanism," Renewable Energy, Elsevier, vol. 180(C), pages 954-965.
    18. Sammouda, H. & Royere, C. & Belghith, A. & Maalej, M., 1999. "Reflected radiance distribution law for a 1000 kW thermal solar furnace system," Renewable Energy, Elsevier, vol. 17(1), pages 9-20.
    19. Martínez, J. & Martí-Herrero, Jaime & Villacís, S. & Riofrio, A.J. & Vaca, D., 2017. "Analysis of energy, CO2 emissions and economy of the technological migration for clean cooking in Ecuador," Energy Policy, Elsevier, vol. 107(C), pages 182-187.
    20. Kumar, Atul & Kandpal, Tara C., 2007. "Renewable energy technologies for irrigation water pumping in India: A preliminary attempt towards potential estimation," Energy, Elsevier, vol. 32(5), pages 861-870.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:9:p:2053-2064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.