IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v9y2005i4p379-393.html
   My bibliography  Save this article

Dissemination of cooking energy alternatives in India--a review

Author

Listed:
  • Pohekar, S.D.
  • Kumar, Dinesh
  • Ramachandran, M.

Abstract

Energy requirements for cooking account for 36% of total primary energy consumption in India. The rural and urban populaces, depend mainly, on non-commercial fuels to meet their energy needs. Diverse urban growth patterns have led to structural changes in economy, and have important ramifications on energy consumption in household sector. It is observed that India follows income-based ladder starting with fuelwood and ending with sophisticated fuels like liquefied petroleum gas (LPG) and electricity. This paper discusses cooking energy dissemination in the country with an objective of understanding the underlying socioeconomic factors governing the utilization of various fuels/energy carriers in cooking. The diffusion of renewable energy devices is observed to be far below their estimated potential. Policy interventions required for better dissemination of renewable energy based devices are also discussed.

Suggested Citation

  • Pohekar, S.D. & Kumar, Dinesh & Ramachandran, M., 2005. "Dissemination of cooking energy alternatives in India--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(4), pages 379-393, August.
  • Handle: RePEc:eee:rensus:v:9:y:2005:i:4:p:379-393
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(04)00063-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kishore, V.V.N & Ramana, P.V, 2002. "Improved cookstoves in rural India: how improved are they?," Energy, Elsevier, vol. 27(1), pages 47-63.
    2. Bhatt, B. P. & Sachan, M. S., 2004. "Firewood consumption pattern of different tribal communities in Northeast India," Energy Policy, Elsevier, vol. 32(1), pages 1-6, January.
    3. Reddy, Sudhakar & Painuly, J.P, 2004. "Diffusion of renewable energy technologies—barriers and stakeholders’ perspectives," Renewable Energy, Elsevier, vol. 29(9), pages 1431-1447.
    4. Cynthia Neudoerffer, R. & Malhotra, Preeti & Venkata Ramana, P., 2001. "Participatory rural energy planning in India -- a policy context," Energy Policy, Elsevier, vol. 29(5), pages 371-381, April.
    5. Kumar, Arun & Jain, Sudhir K. & Bansal, N. K., 2003. "Disseminating energy-efficient technologies: a case study of compact fluorescent lamps (CFLs) in India," Energy Policy, Elsevier, vol. 31(3), pages 259-272, February.
    6. Ravindranath, N. H. & Ramakrishna, J., 1997. "Energy options for cooking in India," Energy Policy, Elsevier, vol. 25(1), pages 63-75, January.
    7. Reddy, B. Sudhakara, 2003. "Overcoming the energy efficiency gap in India's household sector," Energy Policy, Elsevier, vol. 31(11), pages 1117-1127, September.
    8. Purohit, P & Kumar, A & Rana, S & Kandpal, T.C, 2002. "Using renewable energy technologies for domestic cooking in India: a methodology for potential estimation," Renewable Energy, Elsevier, vol. 26(2), pages 235-246.
    9. Pohekar, S.D. & Ramachandran, M., 2004. "Multi-criteria evaluation of cooking energy alternatives for promoting parabolic solar cooker in India," Renewable Energy, Elsevier, vol. 29(9), pages 1449-1460.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pohekar, S.D. & Ramachandran, M., 2006. "Multi-criteria evaluation of cooking devices with special reference to utility of parabolic solar cooker (PSC) in India," Energy, Elsevier, vol. 31(8), pages 1215-1227.
    2. van Ruijven, Bas J. & van Vuuren, Detlef P. & de Vries, Bert J.M. & Isaac, Morna & van der Sluijs, Jeroen P. & Lucas, Paul L. & Balachandra, P., 2011. "Model projections for household energy use in India," Energy Policy, Elsevier, vol. 39(12), pages 7747-7761.
    3. Bhattacharya, Soma & Cropper, Maureen L., 2010. "Options for Energy Efficiency in India and Barriers to Their Adoption: A Scoping Study," RFF Working Paper Series dp-10-20, Resources for the Future.
    4. Indora, Sunil & Kandpal, Tara C., 2019. "Financial appraisal of using Scheffler dish for steam based institutional solar cooking in India," Renewable Energy, Elsevier, vol. 135(C), pages 1400-1411.
    5. Naik, Hardik & Baredar, Prashant & Kumar, Anil, 2017. "Medium temperature application of concentrated solar thermal technology: Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 369-378.
    6. Pohekar, S.D. & Ramachandran, M., 2004. "Multi-criteria evaluation of cooking energy alternatives for promoting parabolic solar cooker in India," Renewable Energy, Elsevier, vol. 29(9), pages 1449-1460.
    7. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    8. Bansal, Mohit & Saini, R.P. & Khatod, D.K., 2013. "Development of cooking sector in rural areas in India—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 44-53.
    9. Sunil Indora & Tara C. Kandpal, 2020. "Solar energy for institutional cooking in India: prospects and potential," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7153-7175, December.
    10. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2017. "Financial attractiveness of decentralized renewable energy systems – A case of the central Himalayan state of Uttarakhand in India," Renewable Energy, Elsevier, vol. 101(C), pages 973-991.
    11. Nihit Goyal, 2021. "Limited Demand or Unreliable Supply? A Bibliometric Review and Computational Text Analysis of Research on Energy Policy in India," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
    12. Sesan, Temilade, 2012. "Navigating the limitations of energy poverty: Lessons from the promotion of improved cooking technologies in Kenya," Energy Policy, Elsevier, vol. 47(C), pages 202-210.
    13. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    14. García-Frapolli, Eduardo & Schilmann, Astrid & Berrueta, Victor M. & Riojas-Rodríguez, Horacio & Edwards, Rufus D. & Johnson, Michael & Guevara-Sanginés, Alejandro & Armendariz, Cynthia & Masera, Omar, 2010. "Beyond fuelwood savings: Valuing the economic benefits of introducing improved biomass cookstoves in the Purépecha region of Mexico," Ecological Economics, Elsevier, vol. 69(12), pages 2598-2605, October.
    15. Thakur, Akshay & Kumar, Rajat & Dwivedi, Ankur & Goel, Varun, 2023. "Solar cooking technology in India: Identification and prioritization of potential challenges," Renewable Energy, Elsevier, vol. 219(P1).
    16. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    17. Srinivas, Morapakala, 2011. "Domestic solar hot water systems: Developments, evaluations and essentials for “viability” with a special reference to India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3850-3861.
    18. Muhumuza, Ronald & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn & Pugsley, Adrian, 2018. "Energy consumption levels and technical approaches for supporting development of alternative energy technologies for rural sectors of developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 90-102.
    19. Rout, Ullash K., 2011. "Prospects of India's energy and emissions for a long time frame," Energy Policy, Elsevier, vol. 39(9), pages 5647-5663, September.
    20. Arora, Pooja & Jain, Suresh, 2016. "A review of chronological development in cookstove assessment methods: Challenges and way forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 203-220.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:9:y:2005:i:4:p:379-393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.