IDEAS home Printed from https://ideas.repec.org/r/eee/phsmap/v506y2018icp507-519.html
   My bibliography  Save this item

Statistical properties and multifractality of Bitcoin

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Khuntia, Sashikanta & Pattanayak, J.K., 2020. "Adaptive long memory in volatility of intra-day bitcoin returns and the impact of trading volume," Finance Research Letters, Elsevier, vol. 32(C).
  2. Aloui, Chaker & Hamida, Hela ben & Yarovaya, Larisa, 2021. "Are Islamic gold-backed cryptocurrencies different?," Finance Research Letters, Elsevier, vol. 39(C).
  3. Garcia-Jorcano, Laura & Benito, Sonia, 2020. "Studying the properties of the Bitcoin as a diversifying and hedging asset through a copula analysis: Constant and time-varying," Research in International Business and Finance, Elsevier, vol. 54(C).
  4. Tetsuya Takaishi & Takanori Adachi, 2020. "Market Efficiency, Liquidity, and Multifractality of Bitcoin: A Dynamic Study," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(1), pages 145-154, March.
  5. Telli, Şahin & Chen, Hongzhuan, 2020. "Multifractal behavior in return and volatility series of Bitcoin and gold in comparison," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  6. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
  7. Cristiana Vaz & Rui Pascoal & Helder Sebastião, 2021. "Price Appreciation and Roughness Duality in Bitcoin: A Multifractal Analysis," Mathematics, MDPI, vol. 9(17), pages 1-18, August.
  8. Takaishi, Tetsuya, 2020. "Rough volatility of Bitcoin," Finance Research Letters, Elsevier, vol. 32(C).
  9. Telli, Şahin & Chen, Hongzhuan, 2020. "Structural breaks and trend awareness-based interaction in crypto markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
  10. Matthieu Garcin, 2019. "Hurst Exponents And Delampertized Fractional Brownian Motions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-26, August.
  11. Foued Sa^adaoui, 2023. "Structured Multifractal Scaling of the Principal Cryptocurrencies: Examination using a Self-Explainable Machine Learning," Papers 2304.08440, arXiv.org.
  12. Kristjanpoller, Werner & Bouri, Elie & Takaishi, Tetsuya, 2020. "Cryptocurrencies and equity funds: Evidence from an asymmetric multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
  13. Kakinaka, Shinji & Umeno, Ken, 2022. "Asymmetric volatility dynamics in cryptocurrency markets on multi-time scales," Research in International Business and Finance, Elsevier, vol. 62(C).
  14. Zhuhua Jiang & Walid Mensi & Seong-Min Yoon, 2023. "Risks in Major Cryptocurrency Markets: Modeling the Dual Long Memory Property and Structural Breaks," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
  15. da Cunha, C.R. & da Silva, R., 2020. "Relevant stylized facts about bitcoin: Fluctuations, first return probability, and natural phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
  16. Katsiampa, Paraskevi, 2019. "An empirical investigation of volatility dynamics in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 50(C), pages 322-335.
  17. Tetsuya Takaishi, 2019. "Rough volatility of Bitcoin," Papers 1904.12346, arXiv.org.
  18. Eom, Cheoljun & Kaizoji, Taisei & Kang, Sang Hoon & Pichl, Lukas, 2019. "Bitcoin and investor sentiment: Statistical characteristics and predictability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 511-521.
  19. Tetsuya Takaishi & Takanori Adachi, 2019. "Market efficiency, liquidity, and multifractality of Bitcoin: A dynamic study," Papers 1902.09253, arXiv.org.
  20. Un, Kuok Sin & Ausloos, Marcel, 2022. "Equity premium prediction: Taking into account the role of long, even asymmetric, swings in stock market behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
  21. Stefano Martinazzi & Daniele Regoli & Andrea Flori, 2020. "A Tale of Two Layers: The Mutual Relationship between Bitcoin and Lightning Network," Risks, MDPI, vol. 8(4), pages 1-18, December.
  22. Marcin Wątorek & Jarosław Kwapień & Stanisław Drożdż, 2022. "Multifractal Cross-Correlations of Bitcoin and Ether Trading Characteristics in the Post-COVID-19 Time," Future Internet, MDPI, vol. 14(7), pages 1-15, July.
  23. Panayiotis Theodossiou & Polina Ellina & Christos S. Savva, 2022. "Stochastic properties and pricing of bitcoin using a GJR-GARCH model with conditional skewness and kurtosis components," Review of Quantitative Finance and Accounting, Springer, vol. 59(2), pages 695-716, August.
  24. López-Martín, Carmen & Arguedas-Sanz, Raquel & Muela, Sonia Benito, 2022. "A cryptocurrency empirical study focused on evaluating their distribution functions," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 387-407.
  25. Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
  26. Matthieu Garcin, 2018. "Hurst exponents and delampertized fractional Brownian motions," Working Papers hal-01919754, HAL.
  27. Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting Realized Volatility of Bitcoin: The Role of the Trade War," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 29-53, January.
  28. Akash P. POOJARI & Siva Kiran GUPTHA & G Raghavender RAJU, 2022. "Multifractal analysis of equities. Evidence from the emerging and frontier banking sectors," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(632), A), pages 61-80, Autumn.
  29. Derick Quintino & Jessica Campoli & Heloisa Burnquist & Paulo Ferreira, 2020. "Efficiency of the Brazilian Bitcoin: A DFA Approach," IJFS, MDPI, vol. 8(2), pages 1-9, April.
  30. Park, Sangjin & Jang, Kwahngsoo & Yang, Jae-Suk, 2021. "Information flow between bitcoin and other financial assets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
  31. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Marcin Wk{a}torek, 2023. "What is mature and what is still emerging in the cryptocurrency market?," Papers 2305.05751, arXiv.org.
  32. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
  33. Altan, Aytaç & Karasu, Seçkin & Bekiros, Stelios, 2019. "Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 325-336.
  34. Mingzhe Wei & Georgios Sermpinis & Charalampos Stasinakis, 2023. "Forecasting and trading Bitcoin with machine learning techniques and a hybrid volatility/sentiment leverage," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 852-871, July.
  35. Kerolly Kedma Felix do Nascimento & Fábio Sandro dos Santos & Jader Silva Jale & Silvio Fernando Alves Xavier Júnior & Tiago A. E. Ferreira, 2023. "Extracting Rules via Markov Chains for Cryptocurrencies Returns Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 1095-1114, March.
  36. T. Takaishi, 2021. "Power-Law Return-Volatility Cross Correlations of Bitcoin," Papers 2102.08187, arXiv.org.
  37. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
  38. Lahmiri, Salim & Bekiros, Stelios, 2019. "Cryptocurrency forecasting with deep learning chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 35-40.
  39. Min Shu & Ruiqiang Song & Wei Zhu, 2021. "The 2021 Bitcoin Bubbles and Crashes—Detection and Classification," Stats, MDPI, vol. 4(4), pages 1-21, November.
  40. Canh, Nguyen Phuc & Wongchoti, Udomsak & Thanh, Su Dinh & Thong, Nguyen Trung, 2019. "Systematic risk in cryptocurrency market: Evidence from DCC-MGARCH model," Finance Research Letters, Elsevier, vol. 29(C), pages 90-100.
  41. Kwon, Ji Ho, 2020. "Tail behavior of Bitcoin, the dollar, gold and the stock market index," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 67(C).
  42. Stephanie Danielle Subramoney & Knowledge Chinhamu & Retius Chifurira, 2021. "Value at Risk estimation using GAS models with heavy tailed distributions for cryptocurrencies," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 10(4), pages 40-54, October.
  43. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2022. "Multifractal cross-correlations of bitcoin and ether trading characteristics in the post-COVID-19 time," Papers 2208.01445, arXiv.org.
  44. Thabani Ndlovu & Delson Chikobvu, 2023. "A Wavelet-Decomposed WD-ARMA-GARCH-EVT Model Approach to Comparing the Riskiness of the BitCoin and South African Rand Exchange Rates," Data, MDPI, vol. 8(7), pages 1-24, July.
  45. Li, Zhenghui & Chen, Liming & Dong, Hao, 2021. "What are bitcoin market reactions to its-related events?," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 1-10.
  46. Telli, Şahin & Chen, Hongzhuan, 2021. "Multifractal behavior relationship between crypto markets and Wikipedia-Reddit online platforms," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  47. Telli, Şahin & Chen, Hongzhuan & Zhao, Xufeng, 2022. "Detecting multifractality and exposing distributions of local fluctuations: Detrended fluctuation analysis with descriptive statistics pooling," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
  48. Takaishi, Tetsuya & Adachi, Takanori, 2018. "Taylor effect in Bitcoin time series," Economics Letters, Elsevier, vol. 172(C), pages 5-7.
  49. Alaoui, Marwane El & Bouri, Elie & Roubaud, David, 2019. "Bitcoin price–volume: A multifractal cross-correlation approach," Finance Research Letters, Elsevier, vol. 31(C).
  50. Tetsuya Takaishi, 2021. "Time-varying properties of asymmetric volatility and multifractality in Bitcoin," Papers 2102.07425, arXiv.org.
  51. R. K. Jana & Indranil Ghosh & Debojyoti Das, 2021. "A differential evolution-based regression framework for forecasting Bitcoin price," Annals of Operations Research, Springer, vol. 306(1), pages 295-320, November.
  52. Pele, Daniel Traian & Wesselhöfft, Niels & Härdle, Wolfgang Karl & Kolossiatis, Michalis & Yatracos, Yannis, 2019. "Phenotypic convergence of cryptocurrencies," IRTG 1792 Discussion Papers 2019-018, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
  53. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2019. "A Peek into the Unobservable: Hidden States and Bayesian Inference for the Bitcoin and Ether Price Series," Papers 1909.10957, arXiv.org, revised Jul 2021.
  54. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
  55. Delson Chikobvu & Thabani Ndlovu, 2023. "The Generalised Extreme Value Distribution Approach to Comparing the Riskiness of BitCoin/US Dollar and South African Rand/US Dollar Returns," JRFM, MDPI, vol. 16(4), pages 1-16, April.
  56. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
  57. Lahmiri, Salim & Bekiros, Stelios, 2020. "Big data analytics using multi-fractal wavelet leaders in high-frequency Bitcoin markets," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.