IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v16y2023i4p253-d1129715.html
   My bibliography  Save this article

The Generalised Extreme Value Distribution Approach to Comparing the Riskiness of BitCoin/US Dollar and South African Rand/US Dollar Returns

Author

Listed:
  • Delson Chikobvu

    (Department of Mathematical Statistics and Actuarial Science, University of the Free State, Bloemfontein 9300, South Africa)

  • Thabani Ndlovu

    (Department of Mathematical Statistics and Actuarial Science, University of the Free State, Bloemfontein 9300, South Africa)

Abstract

In this paper, the generalised extreme value distribution (GEVD) model is employed to estimate financial risk in the form of return levels and the value at risk (VaR) for the two exchange rates, BitCoin/US dollar (BTC/USD) and the South African rand/US dollar (ZAR/USD). The Basel Committee on Banking Supervision (BCBS) responsible for developing supervisory guidelines for banks and financial trading desks recommended that VaR be computed and reported. The maximum likelihood estimation (MLE) method is used to estimate the parameters of the GEVD. The estimated risk values are used to compare the riskiness of the two exchange rates and help both traders and investors to define their position in forex trading. This is to helping understanding the risk they are taking when they convert their savings/investments to BitCoin instead of the South African currency, the rand. The high extreme value index associated with the BTC/USD compared to the ZAR/USD implies that BitCoin is riskier than the rand. The BTC/USD has higher values of expected extreme/tail losses of 13.44%, 18.02%, and 23.41% at short (6 months), medium (12 months), and long (24 months) terms, compared to the ZAR/USD expected extreme/tail losses of 2.40%, 2.84%, and 3.28%, respectively. The computed VaR estimates for losses of USD 0.17, USD 0.22, and USD 0.38 per dollar invested in BTC/USD at 90%, 95%, and 99%, compared to ZAR/USD’s USD 0.03, USD 0.03, and USD 0.04 at the respective confidence levels, confirm the high risk associated with BitCoin. The conclusion drawn from this study is that BTC/USD is riskier than ZAR/USD, despite the rand being a developing country’s currency, hence perceived as being risky. The perception is that the rand is riskier than BitCoin and perceptions do influence exchange rates. Kupiec’s backtest results confirmed the model’s adequacy. These findings are helpful to investors, traders, and risk managers when deciding on trading positions for the two currencies.

Suggested Citation

  • Delson Chikobvu & Thabani Ndlovu, 2023. "The Generalised Extreme Value Distribution Approach to Comparing the Riskiness of BitCoin/US Dollar and South African Rand/US Dollar Returns," JRFM, MDPI, vol. 16(4), pages 1-16, April.
  • Handle: RePEc:gam:jjrfmx:v:16:y:2023:i:4:p:253-:d:1129715
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/16/4/253/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/16/4/253/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tetsuya Takaishi, 2017. "Statistical properties and multifractality of Bitcoin," Papers 1707.07618, arXiv.org, revised May 2018.
    2. Peter M. Garber, 1993. "The Collapse of the Bretton Woods Fixed Exchange Rate System," NBER Chapters, in: A Retrospective on the Bretton Woods System: Lessons for International Monetary Reform, pages 461-494, National Bureau of Economic Research, Inc.
    3. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 207-228, May.
    4. Takaishi, Tetsuya, 2018. "Statistical properties and multifractality of Bitcoin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 507-519.
    5. Blau, Benjamin M., 2018. "Price dynamics and speculative trading in Bitcoin," Research in International Business and Finance, Elsevier, vol. 43(C), pages 15-21.
    6. Heng-Chih Chou & David K. Wang, 2014. "Estimation of tail-related value-at-risk measures: range-based extreme value approach," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 293-304, February.
    7. Wei Zhang & Pengfei Wang & Xiao Li & Dehua Shen, 2018. "Some stylized facts of the cryptocurrency market," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5950-5965, November.
    8. Albert S. Hu & Christine A. Parlour & Uday Rajan, 2019. "Cryptocurrencies: Stylized facts on a new investible instrument," Financial Management, Financial Management Association International, vol. 48(4), pages 1049-1068, December.
    9. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    10. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    11. Katsiampa, Paraskevi & Corbet, Shaen & Lucey, Brian, 2019. "Volatility spillover effects in leading cryptocurrencies: A BEKK-MGARCH analysis," Finance Research Letters, Elsevier, vol. 29(C), pages 68-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thabani Ndlovu & Delson Chikobvu, 2023. "The Generalised Pareto Distribution Model Approach to Comparing Extreme Risk in the Exchange Rate Risk of BitCoin/US Dollar and South African Rand/US Dollar Returns," Risks, MDPI, vol. 11(6), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    2. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    3. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    4. Stefano Martinazzi & Daniele Regoli & Andrea Flori, 2020. "A Tale of Two Layers: The Mutual Relationship between Bitcoin and Lightning Network," Risks, MDPI, vol. 8(4), pages 1-18, December.
    5. Garcia-Jorcano, Laura & Benito, Sonia, 2020. "Studying the properties of the Bitcoin as a diversifying and hedging asset through a copula analysis: Constant and time-varying," Research in International Business and Finance, Elsevier, vol. 54(C).
    6. Min Shu & Ruiqiang Song & Wei Zhu, 2021. "The 2021 Bitcoin Bubbles and Crashes—Detection and Classification," Stats, MDPI, vol. 4(4), pages 1-21, November.
    7. López-Martín, Carmen & Arguedas-Sanz, Raquel & Muela, Sonia Benito, 2022. "A cryptocurrency empirical study focused on evaluating their distribution functions," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 387-407.
    8. Thabani Ndlovu & Delson Chikobvu, 2023. "A Wavelet-Decomposed WD-ARMA-GARCH-EVT Model Approach to Comparing the Riskiness of the BitCoin and South African Rand Exchange Rates," Data, MDPI, vol. 8(7), pages 1-24, July.
    9. Kerolly Kedma Felix do Nascimento & Fábio Sandro dos Santos & Jader Silva Jale & Silvio Fernando Alves Xavier Júnior & Tiago A. E. Ferreira, 2023. "Extracting Rules via Markov Chains for Cryptocurrencies Returns Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 1095-1114, March.
    10. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    11. Katsiampa, Paraskevi, 2019. "An empirical investigation of volatility dynamics in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 50(C), pages 322-335.
    12. Altan, Aytaç & Karasu, Seçkin & Bekiros, Stelios, 2019. "Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 325-336.
    13. Pele, Daniel Traian & Wesselhöfft, Niels & Härdle, Wolfgang Karl & Kolossiatis, Michalis & Yatracos, Yannis, 2019. "Phenotypic convergence of cryptocurrencies," IRTG 1792 Discussion Papers 2019-018, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    14. Khuntia, Sashikanta & Pattanayak, J.K., 2020. "Adaptive long memory in volatility of intra-day bitcoin returns and the impact of trading volume," Finance Research Letters, Elsevier, vol. 32(C).
    15. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2019. "A Peek into the Unobservable: Hidden States and Bayesian Inference for the Bitcoin and Ether Price Series," Papers 1909.10957, arXiv.org, revised Jul 2021.
    16. Takaishi, Tetsuya, 2020. "Rough volatility of Bitcoin," Finance Research Letters, Elsevier, vol. 32(C).
    17. Corbet, Shaen & Katsiampa, Paraskevi & Lau, Chi Keung Marco, 2020. "Measuring quantile dependence and testing directional predictability between Bitcoin, altcoins and traditional financial assets," International Review of Financial Analysis, Elsevier, vol. 71(C).
    18. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Marcin Wk{a}torek, 2023. "What is mature and what is still emerging in the cryptocurrency market?," Papers 2305.05751, arXiv.org.
    19. Telli, Şahin & Chen, Hongzhuan, 2021. "Multifractal behavior relationship between crypto markets and Wikipedia-Reddit online platforms," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    20. Telli, Şahin & Chen, Hongzhuan & Zhao, Xufeng, 2022. "Detecting multifractality and exposing distributions of local fluctuations: Detrended fluctuation analysis with descriptive statistics pooling," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:16:y:2023:i:4:p:253-:d:1129715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.