IDEAS home Printed from https://ideas.repec.org/r/eee/phsmap/v373y2007icp694-712.html
   My bibliography  Save this item

Macroscopic effects of microscopic forces between agents in crowd models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. von Sivers, Isabella & Köster, Gerta, 2015. "Dynamic stride length adaptation according to utility and personal space," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 104-117.
  2. Yamamoto, Hiroki & Yanagisawa, Daichi & Feliciani, Claudio & Nishinari, Katsuhiro, 2019. "Body-rotation behavior of pedestrians for collision avoidance in passing and cross flow," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 486-510.
  3. Collet, Jacques Henri & Fanchon, Jean, 2015. "Crystallization and tile separation in the multi-agent systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 405-417.
  4. Zheng, Xiaoping & Li, Wei & Guan, Chao, 2010. "Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2177-2188.
  5. Feliciani, Claudio & Nishinari, Katsuhiro, 2016. "An improved Cellular Automata model to simulate the behavior of high density crowd and validation by experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 135-148.
  6. Zheng, Linjiang & Peng, Xiaoli & Wang, Linglin & Sun, Dihua, 2019. "Simulation of pedestrian evacuation considering emergency spread and pedestrian panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 167-181.
  7. Tamang, Nutthavuth & Sun, Yi, 2023. "Application of the dynamic Monte Carlo method to pedestrian evacuation dynamics," Applied Mathematics and Computation, Elsevier, vol. 445(C).
  8. Ezaki, Takahiro & Yanagisawa, Daichi & Ohtsuka, Kazumichi & Nishinari, Katsuhiro, 2012. "Simulation of space acquisition process of pedestrians using Proxemic Floor Field Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 291-299.
  9. Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
  10. Suma, Yushi & Yanagisawa, Daichi & Nishinari, Katsuhiro, 2012. "Anticipation effect in pedestrian dynamics: Modeling and experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 248-263.
  11. Chen, Yanyan & Chen, Ning & Wang, Yang & Wang, Zhenbao & Feng, Guochen, 2015. "Modeling pedestrian behaviors under attracting incidents using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 287-300.
  12. Xie, Qimiao & Wu, Yaxin & Wang, Yitian & Zhang, Hui, 2024. "A multi-grid evacuation model considering the effects of different turning types," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
  13. Srinivasan, Aravinda Ramakrishnan & Karan, Farshad Salimi Naneh & Chakraborty, Subhadeep, 2017. "Pedestrian dynamics with explicit sharing of exit choice during egress through a long corridor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 770-782.
  14. Zheng, Yaochen & Chen, Jianqiao & Wei, Junhong & Guo, Xiwei, 2012. "Modeling of pedestrian evacuation based on the particle swarm optimization algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4225-4233.
  15. Pereira, L.A. & Burgarelli, D. & Duczmal, L.H. & Cruz, F.R.B., 2017. "Emergency evacuation models based on cellular automata with route changes and group fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 97-110.
  16. Shi, Meng & Lee, Eric Wai Ming & Ma, Yi, 2018. "A novel grid-based mesoscopic model for evacuation dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 198-210.
  17. Xiaohong Li & Jianan Zhou & Feng Chen & Zan Zhang, 2018. "Cluster Risk of Walking Scenarios Based on Macroscopic Flow Model and Crowding Force Analysis," Sustainability, MDPI, vol. 10(2), pages 1-16, February.
  18. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
  19. Henein, Colin Marc & White, Tony, 2010. "Microscopic information processing and communication in crowd dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4636-4653.
  20. Guo, Wei & Wang, Xiaolu & Liu, Mengting & Cheng, Yuan & Zheng, Xiaoping, 2015. "Modification of the dynamic floor field model by the heterogeneous bosons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 358-366.
  21. Minsung Kim & Minki Kim, 2014. "Group-Wise Herding Behavior in Financial Markets: An Agent-Based Modeling Approach," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-7, April.
  22. Liu, Shaobo & Yang, Lizhong & Fang, Tingyong & Li, Jian, 2009. "Evacuation from a classroom considering the occupant density around exits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(9), pages 1921-1928.
  23. Jinghong Wang & Siuming Lo & Qingsong Wang & Jinhua Sun & Honglin Mu, 2013. "Risk of Large‐Scale Evacuation Based on the Effectiveness of Rescue Strategies Under Different Crowd Densities," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1553-1563, August.
  24. Guo, Xiwei & Chen, Jianqiao & Zheng, Yaochen & Wei, Junhong, 2012. "A heterogeneous lattice gas model for simulating pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 582-592.
  25. Li, Yan & Liu, Hong & Liu, Guang-peng & Li, Liang & Moore, Philip & Hu, Bin, 2017. "A grouping method based on grid density and relationship for crowd evacuation simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 319-336.
  26. Wang, Xiaolu & Zheng, Xiaoping & Cheng, Yuan, 2012. "Evacuation assistants: An extended model for determining effective locations and optimal numbers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(6), pages 2245-2260.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.