IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v436y2015icp405-417.html
   My bibliography  Save this article

Crystallization and tile separation in the multi-agent systems

Author

Listed:
  • Collet, Jacques Henri
  • Fanchon, Jean

Abstract

This paper deals with the self-organization of simple mobile agents confined in a two-dimension rectangular area. Each agent interacts with its neighbors inside an interaction disk and moves following various types of force-driven couplings (e.g. repulsion or attraction). The agents do not know their absolute position, do not exchange messages, have no memory, and no learning capabilities. We first study the self-organization appearing in systems made-up with one sole type of agents, initially generated at random in the terrain. By changing the agent–agent repulsive interaction, we observe five different population reorganizations, namely, grouping, diffusion (that is classical), but especially interesting, crystallization (i.e., the agents group together on the vertices a regular hexagonal lattice), alignment along straight lines, and vortex dynamics. Then, we consider reorganization in systems made-up from two to five types of agents, where each pair of agent types has specific interaction parameters. The main result of this work is to show that, by only changing the agent–agent repulsion rules, one can generate hexagonal or rectangular multi-agent crystals or on the contrary, induce complete separation in regular hexagonal tiles.

Suggested Citation

  • Collet, Jacques Henri & Fanchon, Jean, 2015. "Crystallization and tile separation in the multi-agent systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 405-417.
  • Handle: RePEc:eee:phsmap:v:436:y:2015:i:c:p:405-417
    DOI: 10.1016/j.physa.2015.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115003830
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.04.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González-Avella, J.C. & Cosenza, M.G. & San Miguel, M., 2014. "Localized coherence in two interacting populations of social agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 24-30.
    2. Prado, Carmen P.C. & Bosco, F., 2007. "Dynamics of moving agents with memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 139-151.
    3. Henein, Colin M. & White, Tony, 2007. "Macroscopic effects of microscopic forces between agents in crowd models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 694-712.
    4. Collet, Jacques Henri, 2007. "Order–disorder alternations in the populations of faulty repulsive agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 345-364.
    5. Rangel-Huerta, A. & Muñoz-Meléndez, A., 2010. "Kinetic theory of situated agents applied to pedestrian flow in a corridor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(5), pages 1077-1089.
    6. Abhinav Singh & Dmitri Vainchtein & Howard Weiss, 2009. "Schelling's Segregation Model: Parameters, scaling, and aggregation," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 21(12), pages 341-366.
    7. Chen, Zhuo & Gao, Jianxi & Cai, Yunze & Xu, Xiaoming, 2011. "Evolution of cooperation among mobile agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1615-1622.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2022. "Migration based on environment comparison promotes cooperation in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    2. Ping Zhu & Guiyi Wei, 2014. "Stochastic Heterogeneous Interaction Promotes Cooperation in Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    3. Zheng, Yaochen & Chen, Jianqiao & Wei, Junhong & Guo, Xiwei, 2012. "Modeling of pedestrian evacuation based on the particle swarm optimization algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4225-4233.
    4. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    5. Jinghong Wang & Siuming Lo & Qingsong Wang & Jinhua Sun & Honglin Mu, 2013. "Risk of Large‐Scale Evacuation Based on the Effectiveness of Rescue Strategies Under Different Crowd Densities," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1553-1563, August.
    6. Jennifer Boyd & Rebekah Wilson & Corinna Elsenbroich & Alison Heppenstall & Petra Meier, 2022. "Agent-Based Modelling of Health Inequalities following the Complexity Turn in Public Health: A Systematic Review," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    7. Ning, Bo & Ren, Quansheng & Zhao, Jianye, 2012. "Enhancing consensus in weighted networks with coupling time-delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3061-3068.
    8. Ezaki, Takahiro & Yanagisawa, Daichi & Ohtsuka, Kazumichi & Nishinari, Katsuhiro, 2012. "Simulation of space acquisition process of pedestrians using Proxemic Floor Field Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 291-299.
    9. Zhang, Lan & Pan, Jianchen & Huang, Changwei, 2023. "Effect of mixed random and directional migration on cooperation in the spatial prisoner’s dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    10. Kalloniatis, Alexander C. & Zuparic, Mathew L., 2016. "Fixed points and stability in the two-network frustrated Kuramoto model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 21-35.
    11. Minsung Kim & Minki Kim, 2014. "Group-Wise Herding Behavior in Financial Markets: An Agent-Based Modeling Approach," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-7, April.
    12. Pablo Medina & Eric Goles & Roberto Zarama & Sergio Rica, 2017. "Self-Organized Societies: On the Sakoda Model of Social Interactions," Complexity, Hindawi, vol. 2017, pages 1-16, January.
    13. Zheng, Xiaoping & Li, Wei & Guan, Chao, 2010. "Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2177-2188.
    14. Li, Yan & Ye, Hang & Zhang, Hong, 2016. "Evolution of cooperation driven by social-welfare-based migration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 48-56.
    15. Rangel-Huerta, A. & Ballinas-Hernández, A.L. & Muñoz-Meléndez, A., 2017. "An entropy model to measure heterogeneity of pedestrian crowds using self-propelled agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 213-224.
    16. Yamamoto, Hiroki & Yanagisawa, Daichi & Feliciani, Claudio & Nishinari, Katsuhiro, 2019. "Body-rotation behavior of pedestrians for collision avoidance in passing and cross flow," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 486-510.
    17. Xie, Qimiao & Wu, Yaxin & Wang, Yitian & Zhang, Hui, 2024. "A multi-grid evacuation model considering the effects of different turning types," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    18. Henein, Colin Marc & White, Tony, 2010. "Microscopic information processing and communication in crowd dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4636-4653.
    19. You, Feng & Yang, Han-Xin & Li, Yumeng & Du, Wenbo & Wang, Gang, 2023. "A modified Vicsek model based on the evolutionary game," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    20. Yan, Shiqing, 2017. "The evolution of human mobility based on the public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 69-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:436:y:2015:i:c:p:405-417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.