IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v417y2015icp358-366.html
   My bibliography  Save this article

Modification of the dynamic floor field model by the heterogeneous bosons

Author

Listed:
  • Guo, Wei
  • Wang, Xiaolu
  • Liu, Mengting
  • Cheng, Yuan
  • Zheng, Xiaoping

Abstract

In the dynamic floor field model, the bosons are homogeneous. This causes a problem that the pedestrians are confused by their own traces. The model has been modified by the heterogeneous bosons. Compared with the dynamic floor field model based on the homogeneous bosons, the modified model exhibits realistic pedestrian behaviors, and the effect of modification on the model parameters is analyzed in subsequent numerical simulations. By sensitivity analysis for the model parameters, it is found that the characteristic of a crowd system, which is represented by the correspondence between the following behavior and the evacuation time, is determined by the decay of the bosons; it is also found that diffusion of the bosons can describe the uncertainty of information transformation which is related to the evacuation time. In addition, an interesting phenomenon implies that for the pedestrians who are unfamiliar with the structure to find the exit, the accurate information from the persons around them is more beneficial than that from the distant ones.

Suggested Citation

  • Guo, Wei & Wang, Xiaolu & Liu, Mengting & Cheng, Yuan & Zheng, Xiaoping, 2015. "Modification of the dynamic floor field model by the heterogeneous bosons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 358-366.
  • Handle: RePEc:eee:phsmap:v:417:y:2015:i:c:p:358-366
    DOI: 10.1016/j.physa.2014.08.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114007572
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.08.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ezaki, Takahiro & Yanagisawa, Daichi & Ohtsuka, Kazumichi & Nishinari, Katsuhiro, 2012. "Simulation of space acquisition process of pedestrians using Proxemic Floor Field Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 291-299.
    2. Guo, Ren-Yong & Huang, Hai-Jun & Wong, S.C., 2012. "Route choice in pedestrian evacuation under conditions of good and zero visibility: Experimental and simulation results," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 669-686.
    3. Fu, Zhijian & Yang, Lizhong & Chen, Yanqiu & Zhu, Kongjin & Zhu, Shi, 2013. "The effect of individual tendency on crowd evacuation efficiency under inhomogeneous exit attraction using a static field modified FFCA model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6090-6099.
    4. Tanimoto, Jun & Hagishima, Aya & Tanaka, Yasukaka, 2010. "Study of bottleneck effect at an emergency evacuation exit using cellular automata model, mean field approximation analysis, and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5611-5618.
    5. Henein, Colin M. & White, Tony, 2007. "Macroscopic effects of microscopic forces between agents in crowd models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 694-712.
    6. Kirchner, Ansgar & Schadschneider, Andreas, 2002. "Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 260-276.
    7. Henein, Colin Marc & White, Tony, 2010. "Microscopic information processing and communication in crowd dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4636-4653.
    8. Jia-Bei Zeng & Biao Leng & Zhang Xiong & Zheng Qin, 2011. "Pedestrian Dynamics In A Two-Dimensional Complex Scenario Using A Local View Floor Field Model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 775-803.
    9. Kirchner, Ansgar & Klüpfel, Hubert & Nishinari, Katsuhiro & Schadschneider, Andreas & Schreckenberg, Michael, 2003. "Simulation of competitive egress behavior: comparison with aircraft evacuation data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(3), pages 689-697.
    10. Ji, Xiangfeng & Zhang, Jian & Ran, Bin, 2013. "A study on pedestrian choice between stairway and escalator in the transfer station based on floor field cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5089-5100.
    11. Zheng, Xiaoping & Cheng, Yuan, 2011. "Conflict game in evacuation process: A study combining Cellular Automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1042-1050.
    12. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
    13. Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
    14. Wang, Xiaolu & Zheng, Xiaoping & Cheng, Yuan, 2012. "Evacuation assistants: An extended model for determining effective locations and optimal numbers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(6), pages 2245-2260.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lovreglio, Ruggiero & Ronchi, Enrico & Nilsson, Daniel, 2015. "Calibrating floor field cellular automaton models for pedestrian dynamics by using likelihood function optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 308-320.
    2. Cheng, Yuan & Zheng, Xiaoping, 2018. "Emergence of cooperation during an emergency evacuation," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 485-494.
    3. Kaji, Masaru & Inohara, Takehiro, 2017. "Cellular automaton simulation of unidirectional pedestrians flow in a corridor to reproduce the unique velocity profile of Hagen–Poiseuille flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 85-95.
    4. Shi, Meng & Lee, Eric Wai Ming & Ma, Yi, 2018. "A novel grid-based mesoscopic model for evacuation dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 198-210.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Baobao & Lu, Chunxia & Mao, Shirong & Li, Yi, 2020. "Effect of pedestrian judgement on evacuation efficiency considering hesitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    2. Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    3. Li, Shengnan & Li, Xingang & Qu, Yunchao & Jia, Bin, 2015. "Block-based floor field model for pedestrian’s walking through corner," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 337-353.
    4. Yamamoto, Hiroki & Yanagisawa, Daichi & Feliciani, Claudio & Nishinari, Katsuhiro, 2019. "Body-rotation behavior of pedestrians for collision avoidance in passing and cross flow," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 486-510.
    5. Lovreglio, Ruggiero & Ronchi, Enrico & Nilsson, Daniel, 2015. "Calibrating floor field cellular automaton models for pedestrian dynamics by using likelihood function optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 308-320.
    6. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
    7. Wang, Xiaolu & Zheng, Xiaoping & Cheng, Yuan, 2012. "Evacuation assistants: An extended model for determining effective locations and optimal numbers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(6), pages 2245-2260.
    8. Shi, Meng & Lee, Eric Wai Ming & Ma, Yi, 2018. "A novel grid-based mesoscopic model for evacuation dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 198-210.
    9. Gwizdałła, Tomasz M., 2015. "Some properties of the floor field cellular automata evacuation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 718-728.
    10. Song, Xiao & Ma, Liang & Ma, Yaofei & Yang, Chen & Ji, Hang, 2016. "Selfishness- and Selflessness-based models of pedestrian room evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 455-466.
    11. Leng, Biao & Wang, Jianyuan & Zhao, Wenyuan & Xiong, Zhang, 2014. "An extended floor field model based on regular hexagonal cells for pedestrian simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 119-133.
    12. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    13. Ezaki, Takahiro & Yanagisawa, Daichi & Ohtsuka, Kazumichi & Nishinari, Katsuhiro, 2012. "Simulation of space acquisition process of pedestrians using Proxemic Floor Field Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 291-299.
    14. Li, Jun & Fu, Siyao & He, Haibo & Jia, Hongfei & Li, Yanzhong & Guo, Yi, 2015. "Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 304-321.
    15. Huang, Rong & Zhao, Xuan & Zhou, Chenyu & Kong, Lingchen & Liu, Chengqing & Yu, Qiang, 2022. "Static floor field construction and fine discrete cellular automaton model: Algorithms, simulations and insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    16. Xie, Qimiao & Wu, Yaxin & Wang, Yitian & Zhang, Hui, 2024. "A multi-grid evacuation model considering the effects of different turning types," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    17. Yu Song & Jia Liu & Qian Liu, 2021. "Dynamic Decision-Making Process of Evacuees during Post-Earthquake Evacuation near an Automatic Flap Barrier Gate System: A Broken Windows Perspective," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    18. Liu, Qian, 2018. "The effect of dedicated exit on the evacuation of heterogeneous pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 305-323.
    19. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
    20. Feliciani, Claudio & Nishinari, Katsuhiro, 2016. "An improved Cellular Automata model to simulate the behavior of high density crowd and validation by experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 135-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:417:y:2015:i:c:p:358-366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.