IDEAS home Printed from https://ideas.repec.org/r/eee/phsmap/v344y2004i1p227-235.html
   My bibliography  Save this item

Exponential distribution of financial returns at mesoscopic time lags: a new stylized fact

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ralf Remer & Reinhard Mahnke, 2004. "Application of the heston and hull-white models to german dax data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 685-693.
  2. Guillaume Coqueret, 2017. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02312186, HAL.
  3. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical distributions of Chinese stock returns at different microscopic timescales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 495-502.
  4. Rui Vilela Mendes & M. J. Oliveira, 2006. "A data-reconstructed fractional volatility model," Papers math/0602013, arXiv.org, revised Jun 2007.
  5. Silva, A. Christian & Prange, Richard E., 2007. "Virtual volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 507-516.
  6. Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2008. "Are output growth-rate distributions fat-tailed? some evidence from OECD countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 639-669.
  7. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
  8. Song-Ping Zhu & Guang-Hua Lian, 2018. "On the Convexity Correction Approximation in Pricing Volatility Swaps and VIX Futures," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 383-401, November.
  9. Zhong, Guang-Yan & Li, Jiang-Cheng & Jiang, George J. & Li, Hai-Feng & Tao, Hui-Ming, 2018. "The time delay restraining the herd behavior with Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 335-346.
  10. de Mattos Neto, Paulo S.G. & Cavalcanti, George D.C. & Madeiro, Francisco & Ferreira, Tiago A.E., 2013. "An ideal gas approach to classify countries using financial indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 177-183.
  11. Romanovsky, M.Yu. & Vidov, P.V., 2011. "Analytical representation of stock and stock-indexes returns: Non-Gaussian random walks with various jump laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3794-3805.
  12. Harras, Georges & Sornette, Didier, 2011. "How to grow a bubble: A model of myopic adapting agents," Journal of Economic Behavior & Organization, Elsevier, vol. 80(1), pages 137-152.
  13. Cassidy, Daniel T. & Hamp, Michael J. & Ouyed, Rachid, 2010. "Pricing European options with a log Student’s t-distribution: A Gosset formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5736-5748.
  14. Jinkyu Kim & Gunn Kim & Sungbae An & Young-Kyun Kwon & Sungroh Yoon, 2013. "Entropy-Based Analysis and Bioinformatics-Inspired Integration of Global Economic Information Transfer," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-10, January.
  15. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2021. "Financial Return Distributions: Past, Present, and COVID-19," Papers 2107.06659, arXiv.org.
  16. Guillaume Coqueret, 2017. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02000726, HAL.
  17. Kleinert, H. & Chen, X.J., 2007. "Boltzmann distribution and market temperature," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 513-518.
  18. Chiang, Thomas C. & Yu, Hai-Chin & Wu, Ming-Chya, 2009. "Statistical properties, dynamic conditional correlation and scaling analysis: Evidence from Dow Jones and Nasdaq high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1555-1570.
  19. Jaume Masoliver & Josep Perello, 2006. "Multiple time scales and the exponential Ornstein-Uhlenbeck stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 423-433.
  20. Coqueret, Guillaume, 2017. "Empirical properties of a heterogeneous agent model in large dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 180-201.
  21. Bai, Man-Ying & Zhu, Hai-Bo, 2010. "Power law and multiscaling properties of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1883-1890.
  22. Ramos, Antônio M.T. & Carvalho, J.A. & Vasconcelos, G.L., 2016. "Exponential model for option prices: Application to the Brazilian market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 161-168.
  23. Paulo L. dos Santos, 2017. "The Principle of Social Scaling," Complexity, Hindawi, vol. 2017, pages 1-9, December.
  24. Saralees Nadarajah, 2012. "Models for stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 411-424, February.
  25. Jan Novotny, 2010. "Were Stocks during the Financial Crisis More Jumpy: A Comparative Study," CERGE-EI Working Papers wp416, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
  26. Seemann, Lars & McCauley, Joseph L. & Gunaratne, Gemunu H., 2011. "Intraday volatility and scaling in high frequency foreign exchange markets," International Review of Financial Analysis, Elsevier, vol. 20(3), pages 121-126, June.
  27. de Mattos Neto, Paulo S.G. & Silva, David A. & Ferreira, Tiago A.E. & Cavalcanti, George D.C., 2011. "Market volatility modeling for short time window," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3444-3453.
  28. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
  29. Andreas Behr & Ulrich Pötter, 2009. "Alternatives to the normal model of stock returns: Gaussian mixture, generalised logF and generalised hyperbolic models," Annals of Finance, Springer, vol. 5(1), pages 49-68, January.
  30. Sosa-Correa, William O. & Ramos, Antônio M.T. & Vasconcelos, Giovani L., 2018. "Investigation of non-Gaussian effects in the Brazilian option market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 525-539.
  31. Paulo dos Santos, 2016. "The Principle of Social Scaling," Working Papers 1606, New School for Social Research, Department of Economics.
  32. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
  33. repec:hal:wpspec:info:hdl:2441/9848 is not listed on IDEAS
  34. Pan, Raj Kumar & Sinha, Sitabhra, 2008. "Inverse-cubic law of index fluctuation distribution in Indian markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2055-2065.
  35. repec:spo:wpecon:info:hdl:2441/9848 is not listed on IDEAS
  36. repec:spo:wpmain:info:hdl:2441/9848 is not listed on IDEAS
  37. repec:hal:spmain:info:hdl:2441/9848 is not listed on IDEAS
  38. Ballestra, Luca Vincenzo & Pacelli, Graziella & Zirilli, Francesco, 2007. "A numerical method to price exotic path-dependent options on an underlying described by the Heston stochastic volatility model," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3420-3437, November.
  39. Guillaume Coqueret, 2016. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02088097, HAL.
  40. Wei-Ru Chen & A. Christian Silva & Shen-Ning Tung, 2024. "Stylized facts in Web3," Papers 2408.07653, arXiv.org, revised Dec 2024.
  41. Zhu, Song-Ping & Lian, Guang-Hua, 2015. "Pricing forward-start variance swaps with stochastic volatility," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 920-933.
  42. Bernardo Spagnolo & Davide Valenti, 2008. "Volatility Effects on the Escape Time in Financial Market Models," Papers 0810.1625, arXiv.org.
  43. Buchbinder, G.L. & Chistilin, K.M., 2007. "Multiple time scales and the empirical models for stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 168-178.
  44. López Martín, María del Mar & García, Catalina García & García Pérez, José, 2012. "Treatment of kurtosis in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2032-2045.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.