IDEAS home Printed from https://ideas.repec.org/r/eee/jaitra/v34y2014icp146-153.html
   My bibliography  Save this item

Efficiency and effectiveness in airline performance using a SBM-NDEA model in the presence of shared input

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Khezrimotlagh, Dariush & Kaffash, Sepideh & Zhu, Joe, 2022. "U.S. airline mergers’ performance and productivity change," Journal of Air Transport Management, Elsevier, vol. 102(C).
  2. Ying Li & Tai‐Yu Lin & Yung‐ho Chiu & Shu‐Ning Lin & Tzu‐Han Chang, 2021. "Impact of alliances and delay rate on airline performance," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(6), pages 1607-1618, September.
  3. Yakath Ali, Nurul Syuhadah & Yu, Chunyan & See, Kok Fong, 2021. "Four decades of airline productivity and efficiency studies: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 96(C).
  4. Heydari, Chiman & Omrani, Hashem & Taghizadeh, Rahim, 2020. "A fully fuzzy network DEA-Range Adjusted Measure model for evaluating airlines efficiency: A case of Iran," Journal of Air Transport Management, Elsevier, vol. 89(C).
  5. Gudiel Pineda, Pedro Jose & Liou, James J.H. & Hsu, Chao-Che & Chuang, Yen-Ching, 2018. "An integrated MCDM model for improving airline operational and financial performance," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 103-117.
  6. Mahmut BAKIR & Şahap AKAN & Kasım KIRACI & Darjan KARABASEVIC & Dragisa STANUJKIC & Gabrijela POPOVIC, 2020. "Multiple-Criteria Approach of the Operational Performance Evaluation in the Airline Industry: Evidence from the Emerging Markets," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 149-172, July.
  7. Cui, Qiang & Lin, Jing-ling & Jin, Zi-yin, 2020. "Evaluating airline efficiency under “Carbon Neutral Growth from 2020” strategy through a Network Interval Slack-Based Measure," Energy, Elsevier, vol. 193(C).
  8. Li, Ye & Cui, Qiang, 2018. "Investigating the role of cooperation in the GHG abatement costs of airlines under CNG2020 strategy via a DEA cross PAC model," Energy, Elsevier, vol. 161(C), pages 725-736.
  9. lo Storto, Corrado, 2018. "The analysis of the cost-revenue production cycle efficiency of the Italian airports: A NSBM DEA approach," Journal of Air Transport Management, Elsevier, vol. 72(C), pages 77-85.
  10. Barros, Carlos Pestana & Wanke, Peter, 2015. "An analysis of African airlines efficiency with two-stage TOPSIS and neural networks," Journal of Air Transport Management, Elsevier, vol. 44, pages 90-102.
  11. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2015. "Evaluating airline efficiency: An application of Virtual Frontier Network SBM," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 1-17.
  12. Li, Ye & Cui, Qiang, 2017. "Carbon neutral growth from 2020 strategy and airline environmental inefficiency: A Network Range Adjusted Environmental Data Envelopment Analysis," Applied Energy, Elsevier, vol. 199(C), pages 13-24.
  13. Omrani, Hashem & Yang, Zijiang & Karbasian, Arash & Teplova, Tamara, 2023. "Combination of top-down and bottom-up DEA models using PCA: A two-stage network DEA with shared input and undesirable output for evaluation of the road transport sector," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
  14. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
  15. Chang, Young-Tae & (Kevin) Park, Hyosoo & Zou, Bo & Kafle, Nabin, 2016. "Passenger facility charge vs. airport improvement program funds: A dynamic network DEA analysis for U.S. airport financing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 76-93.
  16. Cui, Qiang & Li, Ye & Yu, Chen-lu & Wei, Yi-Ming, 2016. "Evaluating energy efficiency for airlines: An application of Virtual Frontier Dynamic Slacks Based Measure," Energy, Elsevier, vol. 113(C), pages 1231-1240.
  17. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
  18. Yu, Ming-Miin & Chang, Yu-Chun & Chen, Li-Hsueh, 2016. "Measurement of airlines’ capacity utilization and cost gap: Evidence from low-cost carriers," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 186-198.
  19. Wanke, Peter & Barros, C.P., 2016. "Efficiency in Latin American airlines: A two-stage approach combining Virtual Frontier Dynamic DEA and Simplex Regression," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 93-103.
  20. Ben Lahouel, Béchir & Taleb, Lotfi & Ben Zaied, Younes & Managi, Shunsuke, 2022. "Does primary stakeholder management improve competitiveness? A dynamic network non-parametric frontier approach," Economic Modelling, Elsevier, vol. 116(C).
  21. Kottas, Angelos T. & Madas, Michael A., 2018. "Comparative efficiency analysis of major international airlines using Data Envelopment Analysis: Exploring effects of alliance membership and other operational efficiency determinants," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 1-17.
  22. Hao Zhang & Xinyue Wang & Letao Chen & Yujia Luo & Sujie Peng, 2022. "Evaluation of the Operational Efficiency and Energy Efficiency of Rail Transit in China’s Megacities Using a DEA Model," Energies, MDPI, vol. 15(20), pages 1-16, October.
  23. Zhu, Qingyuan & Xu, Shuqi & Sun, Jiasen & Li, Xingchen & Zhou, Dequn, 2022. "Energy efficiency evaluation of power supply system: A data-driven approach based on shared resources," Applied Energy, Elsevier, vol. 312(C).
  24. Shao, Yanmin & Sun, Changfu, 2016. "Performance evaluation of China's air routes based on network data envelopment analysis approach," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 67-75.
  25. Omrani, Hashem & Soltanzadeh, Elham, 2016. "Dynamic DEA models with network structure: An application for Iranian airlines," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 52-61.
  26. Mallikarjun, Sreekanth, 2015. "Efficiency of US airlines: A strategic operating model," Journal of Air Transport Management, Elsevier, vol. 43(C), pages 46-56.
  27. Barak, Sasan & Dahooei, Jalil Heidary, 2018. "A novel hybrid fuzzy DEA-Fuzzy MADM method for airlines safety evaluation," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 134-149.
  28. Song, Malin & Zheng, Wanping & Wang, Zeya, 2016. "Environmental efficiency and energy consumption of highway transportation systems in China," International Journal of Production Economics, Elsevier, vol. 181(PB), pages 441-449.
  29. Xu, Xin & Cui, Qiang, 2017. "Evaluating airline energy efficiency: An integrated approach with Network Epsilon-based Measure and Network Slacks-based Measure," Energy, Elsevier, vol. 122(C), pages 274-286.
  30. Yu, Ming-Miin & Chen, Li-Hsueh & Chiang, Hui, 2017. "The effects of alliances and size on airlines’ dynamic operational performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 197-214.
  31. Tsionas, Mike G. & Chen, Zhongfei & Wanke, Peter, 2017. "A structural vector autoregressive model of technical efficiency and delays with an application to Chinese airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 1-10.
  32. Kaya, Gizem & Aydın, Umut & Ülengin, Burç & Karadayı, Melis Almula & Ülengin, Füsun, 2023. "How do airlines survive? An integrated efficiency analysis on the survival of airlines," Journal of Air Transport Management, Elsevier, vol. 107(C).
  33. See, Kok Fong & Rashid, Azwan Abdul & Yu, Ming-Miin, 2024. "Measuring the network capacity utilization, energy consumption and environmental inefficiency of global airlines," Energy Economics, Elsevier, vol. 132(C).
  34. Ye Li & Qiang Cui, 2017. "Airline energy efficiency measures using the Virtual Frontier Network RAM with weak disposability," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(4), pages 479-504, May.
  35. Joe Zhu, 2022. "DEA under big data: data enabled analytics and network data envelopment analysis," Annals of Operations Research, Springer, vol. 309(2), pages 761-783, February.
  36. Omrani, Hashem & Valipour, Mahsa & Emrouznejad, Ali, 2021. "A novel best worst method robust data envelopment analysis: Incorporating decision makers’ preferences in an uncertain environment," Operations Research Perspectives, Elsevier, vol. 8(C).
  37. Delbari, Seyyed Ali & Ng, Siew Imm & Aziz, Yuhanis Abdul & Ho, Jo Ann, 2016. "An investigation of key competitiveness indicators and drivers of full-service airlines using Delphi and AHP techniques," Journal of Air Transport Management, Elsevier, vol. 52(C), pages 23-34.
  38. Hashem Omrani & Meisam Shamsi & Ali Emrouznejad, 2023. "Evaluating sustainable efficiency of decision-making units considering undesirable outputs: an application to airline using integrated multi-objective DEA-TOPSIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 5899-5930, July.
  39. Ana Pérez-González & Pablo Carlos & Elisa Alén, 2022. "An analysis of the efficiency of football clubs in the Spanish First Division through a two-stage relational network DEA model: a simulation study," Operational Research, Springer, vol. 22(3), pages 3089-3112, July.
  40. Cavaignac, Laurent & Petiot, Romain, 2017. "A quarter century of Data Envelopment Analysis applied to the transport sector: A bibliometric analysis," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 84-96.
  41. Losa, Eduardo Tola & Arjomandi, Amir & Hervé Dakpo, K. & Bloomfield, Jason, 2020. "Efficiency comparison of airline groups in Annex 1 and non-Annex 1 countries: A dynamic network DEA approach," Transport Policy, Elsevier, vol. 99(C), pages 163-174.
  42. Li, Ye & Cui, Qiang, 2018. "Airline efficiency with optimal employee allocation: An Input-shared Network Range Adjusted Measure," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 150-162.
  43. Cui, Qiang & Li, Ye, 2020. "A cross efficiency distinguishing method to explore the cooperation degree in dynamic airline environmental efficiency," Transport Policy, Elsevier, vol. 99(C), pages 31-43.
  44. Wanke, Peter & Pestana Barros, Carlos & Chen, Zhongfei, 2015. "An analysis of Asian airlines efficiency with two-stage TOPSIS and MCMC generalized linear mixed models," International Journal of Production Economics, Elsevier, vol. 169(C), pages 110-126.
  45. Barbara Gaudenzi & Alessandro Bucciol, 2016. "Jet fuel price variations and market value: a focus on low-cost and regular airline companies," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 17(6), pages 977-991, November.
  46. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures using a Dynamic Epsilon-Based Measure model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 121-134.
  47. Cui, Qiang & Li, Ye & Wei, Yi-Ming, 2017. "Exploring the impacts of EU ETS on the pollution abatement costs of European airlines: An application of Network Environmental Production Function," Transport Policy, Elsevier, vol. 60(C), pages 131-142.
  48. Chen, Ya & Li, Yongjun & Liang, Liang & Salo, Ahti & Wu, Huaqing, 2016. "Frontier projection and efficiency decomposition in two-stage processes with slacks-based measures," European Journal of Operational Research, Elsevier, vol. 250(2), pages 543-554.
  49. Cui, Qiang, 2019. "Investigating the airlines emission reduction through carbon trading under CNG2020 strategy via a Network Weak Disposability DEA," Energy, Elsevier, vol. 180(C), pages 763-771.
  50. Yu, Hang & Zhang, Yahua & Zhang, Anming & Wang, Kun & Cui, Qiang, 2019. "A comparative study of airline efficiency in China and India: A dynamic network DEA approach," Research in Transportation Economics, Elsevier, vol. 76(C).
  51. Cui, Qiang & Li, Ye, 2018. "Airline dynamic efficiency measures with a Dynamic RAM with unified natural & managerial disposability," Energy Economics, Elsevier, vol. 75(C), pages 534-546.
  52. Heshmati, Almas & C. Kumbhakar, Subal & Kim, Jungsuk, 2016. "Persistent and Transient Efficiency of International Airlines," Working Paper Series in Economics and Institutions of Innovation 444, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
  53. Cui, Qiang & Jin, Zi-yin, 2020. "Airline environmental efficiency measures considering negative data: An application of a modified network Modified Slacks-based measure model," Energy, Elsevier, vol. 207(C).
  54. Cui, Qiang, 2021. "A data-based comparison of the five undesirable output disposability approaches in airline environmental efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
  55. Chia-Nan Wang & Tsang-Ta Tsai & Hsien-Pin Hsu & Le-Hoang Nguyen, 2019. "Performance Evaluation of Major Asian Airline Companies Using DEA Window Model and Grey Theory," Sustainability, MDPI, vol. 11(9), pages 1-20, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.