IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v96y2024ics0038012124002805.html
   My bibliography  Save this article

Assessing airline efficiency with a network DEA model: A Z-number approach with shared resources, undesirable outputs, and negative data

Author

Listed:
  • Yang, Zijiang
  • Omrani, Hashem
  • Imanirad, Raha

Abstract

This study measures the efficiency of airlines using a novel fuzzy common weight additive network data envelopment analysis (NDEA) with shared resources, negative data, and undesirable outputs. First, an appropriate two-stage network is designed for each airline so that stages 1 and 2 are called the Production and Service stages, respectively. The proposed model adopts a top-down approach and calculates the efficiency of the system first and then estimates the efficiency of stages 1 and 2. To evaluate and predict the airlines’ efficiency considering fuzzy data and the reliability of the information, the values of input/intermediate/output variables are predicted as the Z-number and the appropriate Z-number version of NDEA (ZNDEA) models is proposed. To develop the proposed ZNDEA models and find common weights for the variables, three multi-objective ZNDEA models for the system, stage 1 and stage 2 are presented. The multi-objective common weight ZNDEA models are solved using the min-max Chebyshev goal programming technique and the final efficiencies are calculated. To illustrate the capability of the proposed approach, real-life data from Iranian airlines in 2022 are collected, and the efficiencies are analyzed.

Suggested Citation

  • Yang, Zijiang & Omrani, Hashem & Imanirad, Raha, 2024. "Assessing airline efficiency with a network DEA model: A Z-number approach with shared resources, undesirable outputs, and negative data," Socio-Economic Planning Sciences, Elsevier, vol. 96(C).
  • Handle: RePEc:eee:soceps:v:96:y:2024:i:c:s0038012124002805
    DOI: 10.1016/j.seps.2024.102080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012124002805
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2024.102080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khezrimotlagh, Dariush & Kaffash, Sepideh & Zhu, Joe, 2022. "U.S. airline mergers’ performance and productivity change," Journal of Air Transport Management, Elsevier, vol. 102(C).
    2. Hirofumi Fukuyama & Yong Tan, 2023. "Estimating market power under a nonparametric analysis: evidence from the Chinese real estate sector," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(2), pages 599-622, June.
    3. Heydari, Chiman & Omrani, Hashem & Taghizadeh, Rahim, 2020. "A fully fuzzy network DEA-Range Adjusted Measure model for evaluating airlines efficiency: A case of Iran," Journal of Air Transport Management, Elsevier, vol. 89(C).
    4. Abdul Rashid, Azwan & See, Kok Fong & Yu, Ming-Miin, 2024. "Measuring airline efficiency using a dynamic network data envelopment analysis in the presence of innovation capital," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
    5. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    6. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    7. Duygun, Meryem & Prior, Diego & Shaban, Mohamed & Tortosa-Ausina, Emili, 2016. "Disentangling the European airlines efficiency puzzle: A network data envelopment analysis approach," Omega, Elsevier, vol. 60(C), pages 2-14.
    8. Barros, Carlos Pestana & Peypoch, Nicolas, 2009. "An evaluation of European airlines' operational performance," International Journal of Production Economics, Elsevier, vol. 122(2), pages 525-533, December.
    9. Despotis, Dimitris K. & Sotiros, Dimitris & Koronakos, Gregory, 2016. "A network DEA approach for series multi-stage processes," Omega, Elsevier, vol. 61(C), pages 35-48.
    10. Wu, Sijin & Kremantzis, Marios Dominikos & Tanveer, Umair & Ishaq, Shamaila & O'Dea, Xianghan & Jin, Hua, 2024. "Performance evaluation of the global airline industry under the impact of the COVID-19 pandemic: A dynamic network data envelopment analysis approach," Journal of Air Transport Management, Elsevier, vol. 118(C).
    11. Azadeh, A. & Ghaderi, S.F. & Omrani, H. & Eivazy, H., 2009. "An integrated DEA-COLS-SFA algorithm for optimization and policy making of electricity distribution units," Energy Policy, Elsevier, vol. 37(7), pages 2605-2618, July.
    12. Tavassoli, Mohammad & Faramarzi, Gholam Reza & Farzipoor Saen, Reza, 2014. "Efficiency and effectiveness in airline performance using a SBM-NDEA model in the presence of shared input," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 146-153.
    13. Charles, Vincent & Aparicio, Juan & Zhu, Joe, 2019. "The curse of dimensionality of decision-making units: A simple approach to increase the discriminatory power of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 279(3), pages 929-940.
    14. Chen, Yao & Cook, Wade D. & Li, Ning & Zhu, Joe, 2009. "Additive efficiency decomposition in two-stage DEA," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1170-1176, August.
    15. Adel Hatami-Marbini & Aliasghar Arabmaldar & John Otu Asu, 2022. "Robust productivity growth and efficiency measurement with undesirable outputs: evidence from the oil industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1213-1254, December.
    16. Mohsen Afsharian & Heinz Ahn, 2017. "Multi-period productivity measurement under centralized management with an empirical illustration to German saving banks," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 881-911, July.
    17. Fare, Rolf & Grosskopf, Shawna, 2004. "Modeling undesirable factors in efficiency evaluation: Comment," European Journal of Operational Research, Elsevier, vol. 157(1), pages 242-245, August.
    18. Omrani, Hashem & Yang, Zijiang & Karbasian, Arash & Teplova, Tamara, 2023. "Combination of top-down and bottom-up DEA models using PCA: A two-stage network DEA with shared input and undesirable output for evaluation of the road transport sector," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    19. Emrouznejad, Ali & Anouze, Abdel Latef & Thanassoulis, Emmanuel, 2010. "A semi-oriented radial measure for measuring the efficiency of decision making units with negative data, using DEA," European Journal of Operational Research, Elsevier, vol. 200(1), pages 297-304, January.
    20. Sebastián Lozano & Ester Gutiérrez, 2014. "A slacks-based network DEA efficiency analysis of European airlines," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(7), pages 623-637, October.
    21. Emrouznejad, Ali & Amin, Gholam R. & Thanassoulis, Emmanuel & Anouze, Abdel Latef, 2010. "On the boundedness of the SORM DEA models with negative data," European Journal of Operational Research, Elsevier, vol. 206(1), pages 265-268, October.
    22. Hatami-Marbini, A. & Arabmaldar, A. & Otu Asu, J., 2022. "Robust productivity growth and efficiency measurement with undesirable outputs: evidence from the oil industry," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 138964, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    23. Reza Yazdanparast & Reza Tavakkoli-Moghaddam & Razieh Heidari & Leyla Aliabadi, 2021. "A hybrid Z-number data envelopment analysis and neural network for assessment of supply chain resilience: a case study," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 611-631, June.
    24. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    25. Mujahid Abdullahi & Tahir Ahmad & Vinod Ramachandran, 2020. "A Review on Some Arithmetic Concepts of Z-Number and Its Application to Real-World Problems," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1091-1122, July.
    26. Chen, Zhongfei & Wanke, Peter & Antunes, Jorge Junio Moreira & Zhang, Ning, 2017. "Chinese airline efficiency under CO2 emissions and flight delays: A stochastic network DEA model," Energy Economics, Elsevier, vol. 68(C), pages 89-108.
    27. Cui, Qiang & Jin, Zi-yin, 2020. "Airline environmental efficiency measures considering negative data: An application of a modified network Modified Slacks-based measure model," Energy, Elsevier, vol. 207(C).
    28. Kao, Chiang, 2020. "Measuring efficiency in a general production possibility set allowing for negative data," European Journal of Operational Research, Elsevier, vol. 282(3), pages 980-988.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. See, Kok Fong & Rashid, Azwan Abdul & Yu, Ming-Miin, 2024. "Measuring the network capacity utilization, energy consumption and environmental inefficiency of global airlines," Energy Economics, Elsevier, vol. 132(C).
    2. Cui, Qiang & Jin, Zi-yin, 2020. "Airline environmental efficiency measures considering negative data: An application of a modified network Modified Slacks-based measure model," Energy, Elsevier, vol. 207(C).
    3. Omrani, Hashem & Yang, Zijiang & Karbasian, Arash & Teplova, Tamara, 2023. "Combination of top-down and bottom-up DEA models using PCA: A two-stage network DEA with shared input and undesirable output for evaluation of the road transport sector," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    4. See, Kok Fong & Abdul Rashid, Azwan & Yu, Ming-Miin, 2024. "Incorporating CO2 emissions and capacity utilization in the airline inefficiency analysis: A two-stage multiproduct network technology with a nonconvex metafrontier framework," Journal of Air Transport Management, Elsevier, vol. 120(C).
    5. Joe Zhu, 2022. "DEA under big data: data enabled analytics and network data envelopment analysis," Annals of Operations Research, Springer, vol. 309(2), pages 761-783, February.
    6. Khezrimotlagh, Dariush & Kaffash, Sepideh & Zhu, Joe, 2022. "U.S. airline mergers’ performance and productivity change," Journal of Air Transport Management, Elsevier, vol. 102(C).
    7. Abdul Rashid, Azwan & See, Kok Fong & Yu, Ming-Miin, 2024. "Measuring airline efficiency using a dynamic network data envelopment analysis in the presence of innovation capital," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
    8. Kao, Chiang, 2020. "Measuring efficiency in a general production possibility set allowing for negative data," European Journal of Operational Research, Elsevier, vol. 282(3), pages 980-988.
    9. Voltes-Dorta, Augusto & Britto, Rodrigo & Wilson, Bradley, 2024. "Efficiency of global airlines incorporating sustainability objectives: A Malmquist-DEA approach," Journal of Air Transport Management, Elsevier, vol. 119(C).
    10. Tanrıverdi, Gökhan & Merkert, Rico & Karamaşa, Çağlar & Asker, Veysi, 2023. "Using multi-criteria performance measurement models to evaluate the financial, operational and environmental sustainability of airlines," Journal of Air Transport Management, Elsevier, vol. 112(C).
    11. Wang, Ke & Huang, Wei & Wu, Jie & Liu, Ying-Nan, 2014. "Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA," Omega, Elsevier, vol. 44(C), pages 5-20.
    12. Liu, Wenbin & Zhou, Zhongbao & Ma, Chaoqun & Liu, Debin & Shen, Wanfang, 2015. "Two-stage DEA models with undesirable input-intermediate-outputs," Omega, Elsevier, vol. 56(C), pages 74-87.
    13. Yu, Hang & Zhang, Yahua & Zhang, Anming & Wang, Kun & Cui, Qiang, 2019. "A comparative study of airline efficiency in China and India: A dynamic network DEA approach," Research in Transportation Economics, Elsevier, vol. 76(C).
    14. Kao, Chiang, 2022. "Measuring efficiency in a general production possibility set allowing for negative data: An extension and a focus on returns to scale," European Journal of Operational Research, Elsevier, vol. 296(1), pages 267-276.
    15. Yu, Ming-Miin & Chen, Li-Hsueh & Chiang, Hui, 2017. "The effects of alliances and size on airlines’ dynamic operational performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 197-214.
    16. Zhongfei Chen & Stavros Kourtzidis & Panayiotis Tzeremes & Nickolaos Tzeremes, 2022. "A robust network DEA model for sustainability assessment: an application to Chinese Provinces," Operational Research, Springer, vol. 22(1), pages 235-262, March.
    17. Yakath Ali, Nurul Syuhadah & Yu, Chunyan & See, Kok Fong, 2021. "Four decades of airline productivity and efficiency studies: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 96(C).
    18. Chiu, Yung-ho & Huang, Chin-wei & Ma, Chun-Mei, 2011. "Assessment of China transit and economic efficiencies in a modified value-chains DEA model," European Journal of Operational Research, Elsevier, vol. 209(2), pages 95-103, March.
    19. Kaya, Gizem & Aydın, Umut & Ülengin, Burç & Karadayı, Melis Almula & Ülengin, Füsun, 2023. "How do airlines survive? An integrated efficiency analysis on the survival of airlines," Journal of Air Transport Management, Elsevier, vol. 107(C).
    20. Mahmut BAKIR & Şahap AKAN & Kasım KIRACI & Darjan KARABASEVIC & Dragisa STANUJKIC & Gabrijela POPOVIC, 2020. "Multiple-Criteria Approach of the Operational Performance Evaluation in the Airline Industry: Evidence from the Emerging Markets," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 149-172, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:96:y:2024:i:c:s0038012124002805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.