My bibliography
Save this item
Forecasting cryptocurrencies under model and parameter instability
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jacopo Fior & Luca Cagliero & Paolo Garza, 2022. "Leveraging Explainable AI to Support Cryptocurrency Investors," Future Internet, MDPI, vol. 14(9), pages 1-19, August.
- Malte Knuppel & Fabian Kruger & Marc-Oliver Pohle, 2022.
"Score-based calibration testing for multivariate forecast distributions,"
Papers
2211.16362, arXiv.org, revised Dec 2023.
- Knüppel, Malte & Krüger, Fabian & Pohle, Marc-Oliver, 2022. "Score-based calibration testing for multivariate forecast distributions," Discussion Papers 50/2022, Deutsche Bundesbank.
- Fasanya, Ismail O. & Oyewole, Oluwatomisin J. & Oliyide, Johnson A., 2022. "Investors' sentiments and the dynamic connectedness between cryptocurrency and precious metals markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 347-364.
- Bouri, Elie & Christou, Christina & Gupta, Rangan, 2022.
"Forecasting returns of major cryptocurrencies: Evidence from regime-switching factor models,"
Finance Research Letters, Elsevier, vol. 49(C).
- Elie Bouri & Christina Christou & Rangan Gupta, 2022. "Forecasting Returns of Major Cryptocurrencies: Evidence from Regime-Switching Factor Models," Working Papers 202213, University of Pretoria, Department of Economics.
- Dehua Shen & Andrew Urquhart & Pengfei Wang, 2020. "Forecasting the volatility of Bitcoin: The importance of jumps and structural breaks," European Financial Management, European Financial Management Association, vol. 26(5), pages 1294-1323, November.
- Bouteska, Ahmed & Abedin, Mohammad Zoynul & Hajek, Petr & Yuan, Kunpeng, 2024. "Cryptocurrency price forecasting – A comparative analysis of ensemble learning and deep learning methods," International Review of Financial Analysis, Elsevier, vol. 92(C).
- Vahidin Jeleskovic & Mirko Meloni & Zahid Irshad Younas, 2020. "Cryptocurrencies: A Copula Based Approach for Asymmetric Risk Marginal Allocations," MAGKS Papers on Economics 202034, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
- Samet Gunay & Kerem Kaskaloglu & Shahnawaz Muhammed, 2021. "Bitcoin and Fiat Currency Interactions: Surprising Results from Asian Giants," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
- Rick Bohte & Luca Rossini, 2019.
"Comparing the Forecasting of Cryptocurrencies by Bayesian Time-Varying Volatility Models,"
JRFM, MDPI, vol. 12(3), pages 1-18, September.
- Rick Bohte & Luca Rossini, 2019. "Comparing the forecasting of cryptocurrencies by Bayesian time-varying volatility models," Papers 1909.06599, arXiv.org.
- Hachmi Ben Ameur & Zied Ftiti & Waël Louhichi, 2024. "Interconnectedness of cryptocurrency markets: an intraday analysis of volatility spillovers based on realized volatility decomposition," Annals of Operations Research, Springer, vol. 341(2), pages 757-779, October.
- Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
- Chao Liang & Yaojie Zhang & Xiafei Li & Feng Ma, 2022. "Which predictor is more predictive for Bitcoin volatility? And why?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1947-1961, April.
- Pattnaik, Debidutta & Hassan, M. Kabir & Dsouza, Arun & Tiwari, Aviral & Devji, Shridev, 2023. "Ex-post facto analysis of cryptocurrency literature over a decade using bibliometric technique," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
- A. Fronzetti Colladon & S. Grassi & F. Ravazzolo & F. Violante, 2020.
"Forecasting financial markets with semantic network analysis in the COVID-19 crisis,"
Papers
2009.04975, arXiv.org, revised Jul 2023.
- Andrea Fronzetti Colladon & Stefano Grassi & Francesco Ravazzolo & Francesco Violante, 2021. "Forecasting financial markets with semantic network analysis in the COVID—19 crisis," Working Papers 2021-06, Center for Research in Economics and Statistics.
- Andrés García-Medina & Ester Aguayo-Moreno, 2024. "LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1511-1542, April.
- Hilde C. Bjørnland & Jamie L. Cross & Felix Kapfhammer, 2023.
"The Drivers of Emission Reductions in the European Carbon Market,"
Working Papers
No 08/2023, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Hilde C. Bjørnland & Jamie L. Cross & Felix Kapfhammer, 2023. "The Drivers of Emission Reductions in the European Carbon Market," CAMA Working Papers 2023-53, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Altan, Aytaç & Karasu, Seçkin & Bekiros, Stelios, 2019. "Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 325-336.
- Paola Stolfi & Mauro Bernardi & Davide Vergni, 2022. "Robust estimation of time-dependent precision matrix with application to the cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
- Federico D'Amario & Milos Ciganovic, 2022. "Forecasting Cryptocurrencies Log-Returns: a LASSO-VAR and Sentiment Approach," Papers 2210.00883, arXiv.org.
- Anwar Hasan Abdullah Othman & Salina Kassim & Romzie Bin Rosman & Nur Harena Binti Redzuan, 2020. "Prediction accuracy improvement for Bitcoin market prices based on symmetric volatility information using artificial neural network approach," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(5), pages 314-330, October.
- Ahmed Ibrahim & Rasha Kashef & Menglu Li & Esteban Valencia & Eric Huang, 2020. "Bitcoin Network Mechanics: Forecasting the BTC Closing Price Using Vector Auto-Regression Models Based on Endogenous and Exogenous Feature Variables," JRFM, MDPI, vol. 13(9), pages 1-21, August.
- Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
- Lahmiri, Salim & Bekiros, Stelios, 2020. "Intelligent forecasting with machine learning trading systems in chaotic intraday Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
- Leopoldo Catania & Mads Sandholdt, 2019. "Bitcoin at High Frequency," JRFM, MDPI, vol. 12(1), pages 1-20, February.
- Qiu, Yue & Wang, Zongrun & Xie, Tian & Zhang, Xinyu, 2021. "Forecasting Bitcoin realized volatility by exploiting measurement error under model uncertainty," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 179-201.
- Yang, Boyu & Sun, Yuying & Wang, Shouyang, 2020. "A novel two-stage approach for cryptocurrency analysis," International Review of Financial Analysis, Elsevier, vol. 72(C).
- Boldyryev, Stanislav & Gil, Tatyana & Ilchenko, Mariia, 2022. "Environmental and economic assessment of the efficiency of heat exchanger network retrofit options based on the experience of society and energy price records," Energy, Elsevier, vol. 260(C).
- Serdar Neslihanoglu, 2021. "Linearity extensions of the market model: a case of the top 10 cryptocurrency prices during the pre-COVID-19 and COVID-19 periods," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
- Stylianos Asimakopoulos & Marco Lorusso & Francesco Ravazzolo, 2019. "A New Economic Framework: A DSGE Model with Cryptocurrency," Working Papers No 07/2019, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Khanh Hoang & Cuong C. Nguyen & Kongchheng Poch & Thang X. Nguyen, 2020. "Does Bitcoin Hedge Commodity Uncertainty?," JRFM, MDPI, vol. 13(6), pages 1-14, June.
- Thomas E. Koker & Dimitrios Koutmos, 2020. "Cryptocurrency Trading Using Machine Learning," JRFM, MDPI, vol. 13(8), pages 1-7, August.
- Nicolás Magner & Nicolás Hardy, 2022. "Cryptocurrency Forecasting: More Evidence of the Meese-Rogoff Puzzle," Mathematics, MDPI, vol. 10(13), pages 1-27, July.
- Camilla Muglia & Luca Santabarbara & Stefano Grassi, 2019. "Is Bitcoin a Relevant Predictor of Standard & Poor’s 500?," JRFM, MDPI, vol. 12(2), pages 1-10, May.
- Hachicha, Fatma & Masmoudi, Afif & Abid, Ilyes & Obeid, Hassan, 2023. "Herding behavior in exploring the predictability of price clustering in cryptocurrency market," Finance Research Letters, Elsevier, vol. 57(C).
- Foued Sa^adaoui, 2023. "Structured Multifractal Scaling of the Principal Cryptocurrencies: Examination using a Self-Explainable Machine Learning," Papers 2304.08440, arXiv.org.
- Massimo Guidolin & Manuela Pedio, 2022. "Switching Coefficients or Automatic Variable Selection: An Application in Forecasting Commodity Returns," Forecasting, MDPI, vol. 4(1), pages 1-32, February.
- Prof. Reepu & Prof.Bijesh Dhyani & Ms. Ayushi & Dr. Sudhi Sharma & Dr. Manish Kumar, 2022. "Predictive Modelling Of Select Cryptocurrencies And Identifying The Best Suitable Model - With Reference To Arima And Anns," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 6, pages 11-19, December.
- Karl Oton Rudolf & Samer Ajour El Zein & Nicola Jackman Lansdowne, 2021. "Bitcoin as an Investment and Hedge Alternative. A DCC MGARCH Model Analysis," Risks, MDPI, vol. 9(9), pages 1-22, August.
- Bruno P. C. Levy & Hedibert F. Lopes, 2021. "Dynamic Ordering Learning in Multivariate Forecasting," Papers 2101.04164, arXiv.org, revised Nov 2021.
- Jiqian Wang & Feng Ma & Elie Bouri & Yangli Guo, 2023. "Which factors drive Bitcoin volatility: Macroeconomic, technical, or both?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 970-988, July.
- Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Exploring the Predictability of Cryptocurrencies via Bayesian Hidden Markov Models," Papers 2011.03741, arXiv.org, revised Dec 2020.
- Duc Huynh, Toan Luu & Burggraf, Tobias & Wang, Mei, 2020. "Gold, platinum, and expected Bitcoin returns," Journal of Multinational Financial Management, Elsevier, vol. 56(C).
- Cross, Jamie L. & Hou, Chenghan & Trinh, Kelly, 2021. "Returns, volatility and the cryptocurrency bubble of 2017–18," Economic Modelling, Elsevier, vol. 104(C).
- Stylianos Asimakopoulos & Marco Lorusso & Francesco Ravazzolo, 2023.
"A Bayesian DSGE Approach to Modelling Cryptocurrency","
Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 1012-1035, December.
- Stylianos Asimakopoulos & Marco Lorusso & Francesco Ravazzolo, 2023. "Code and data files for "A Bayesian DSGE Approach to Modelling Cryptocurrency"," Computer Codes 21-87, Review of Economic Dynamics.
- Tak Kuen Siu, 2023. "Bayesian nonlinear expectation for time series modelling and its application to Bitcoin," Empirical Economics, Springer, vol. 64(1), pages 505-537, January.
- Pho, Kim Hung & Ly, Sel & Lu, Richard & Hoang, Thi Hong Van & Wong, Wing-Keung, 2021. "Is Bitcoin a better portfolio diversifier than gold? A copula and sectoral analysis for China," International Review of Financial Analysis, Elsevier, vol. 74(C).
- Ying Chen & Paolo Giudici & Branka Hadji Misheva & Simon Trimborn, 2020. "Lead Behaviour in Bitcoin Markets," Risks, MDPI, vol. 8(1), pages 1-14, January.
- Koki, Constandina & Leonardos, Stefanos & Piliouras, Georgios, 2022. "Exploring the predictability of cryptocurrencies via Bayesian hidden Markov models," Research in International Business and Finance, Elsevier, vol. 59(C).
- Kerolly Kedma Felix do Nascimento & Fábio Sandro dos Santos & Jader Silva Jale & Silvio Fernando Alves Xavier Júnior & Tiago A. E. Ferreira, 2023. "Extracting Rules via Markov Chains for Cryptocurrencies Returns Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 1095-1114, March.
- Sasan Barak & Navid Parvini, 2023. "Transfer‐entropy‐based dynamic feature selection for evaluating Bitcoin price drivers," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(12), pages 1695-1726, December.
- Ana Fernández Vilas & Rebeca P. Díaz Redondo & Daniel Couto Cancela & Alejandro Torrado Pazos, 2021. "Interplay between Cryptocurrency Transactions and Online Financial Forums," Mathematics, MDPI, vol. 9(4), pages 1-22, February.
- Foued Saâdaoui & Hana Rabbouch, 2024. "Structured multifractal scaling of the principal cryptocurrencies: Examination using a self‐explainable machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2917-2934, November.
- Dimitrios Koutmos, 2023. "Investor sentiment and bitcoin prices," Review of Quantitative Finance and Accounting, Springer, vol. 60(1), pages 1-29, January.
- Kühn, Oliver & Jacob, Axel & Schüller, Michael, 2019. "Blockchain adoption at German logistics service providers," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Artificial Intelligence and Digital Transformation in Supply Chain Management: Innovative Approaches for Supply Chains. Proceedings of the Hamburg Int, volume 27, pages 387-411, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
- Yuze Li & Shangrong Jiang & Xuerong Li & Shouyang Wang, 2022. "Hybrid data decomposition-based deep learning for Bitcoin prediction and algorithm trading," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-24, December.
- Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
- Anoop S Kumar & Taufeeq Ajaz, 2019. "Co-movement in crypto-currency markets: evidences from wavelet analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-17, December.
- Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.