IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v8y2020i1p4-d305277.html
   My bibliography  Save this article

Lead Behaviour in Bitcoin Markets

Author

Listed:
  • Ying Chen

    (Department of Mathematics and Risk Management Institute, National University of Singapore, Singapore 119077, Singapore)

  • Paolo Giudici

    (Department of Economics and Management, University of Pavia, 27100 Pavia, Italy)

  • Branka Hadji Misheva

    (School of Engineering, ZHAW University of applied sciences, 8005 Zurich, Switzerland)

  • Simon Trimborn

    (Department of Mathematics, National University of Singapore, Singapore 119077, Singapore)

Abstract

We aim to understand the dynamics of Bitcoin blockchain trading volumes and, specifically, how different trading groups, in different geographic areas, interact with each other. To achieve this aim, we propose an extended Vector Autoregressive model, aimed at explaining the evolution of trading volumes, both in time and in space. The extension is based on network models, which improve pure autoregressive models, introducing a contemporaneous contagion component that describes contagion effects between trading volumes. Our empirical findings show that transactions activities in bitcoins is dominated by groups of network participants in Europe and in the United States, consistent with the expectation that market interactions primarily take place in developed economies.

Suggested Citation

  • Ying Chen & Paolo Giudici & Branka Hadji Misheva & Simon Trimborn, 2020. "Lead Behaviour in Bitcoin Markets," Risks, MDPI, vol. 8(1), pages 1-14, January.
  • Handle: RePEc:gam:jrisks:v:8:y:2020:i:1:p:4-:d:305277
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/8/1/4/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/8/1/4/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    2. Jamal Bouoiyour & Refk Selmi & Aviral Kumar Tiwari & Olaolu Richard Olayeni, 2016. "What drives Bitcoin price?," Economics Bulletin, AccessEcon, vol. 36(2), pages 843-850.
    3. J. Lorenz & S. Battiston & F. Schweitzer, 2009. "Systemic risk in a unifying framework for cascading processes on networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 441-460, October.
    4. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    5. P. Giudici & A. Spelta, 2016. "Graphical Network Models for International Financial Flows," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 128-138, January.
    6. Rick Bohte & Luca Rossini, 2019. "Comparing the Forecasting of Cryptocurrencies by Bayesian Time-Varying Volatility Models," JRFM, MDPI, vol. 12(3), pages 1-18, September.
    7. Giudici, Paolo & Abu-Hashish, Iman, 2019. "What determines bitcoin exchange prices? A network VAR approach," Finance Research Letters, Elsevier, vol. 28(C), pages 309-318.
    8. Bouri, Elie & Lau, Chi Keung Marco & Lucey, Brian & Roubaud, David, 2019. "Trading volume and the predictability of return and volatility in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 29(C), pages 340-346.
    9. Sean Foley & Jonathan R Karlsen & Tālis J Putniņš, 2019. "Sex, Drugs, and Bitcoin: How Much Illegal Activity Is Financed through Cryptocurrencies?," The Review of Financial Studies, Society for Financial Studies, vol. 32(5), pages 1798-1853.
    10. Paolo Giudici & Paolo Pagnottoni, 2020. "Vector error correction models to measure connectedness of Bitcoin exchange markets," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(1), pages 95-109, January.
    11. Paolo Giudici & Gloria Polinesi, 2021. "Crypto price discovery through correlation networks," Annals of Operations Research, Springer, vol. 299(1), pages 443-457, April.
    12. Viral Acharya & Robert Engle & Matthew Richardson, 2012. "Capital Shortfall: A New Approach to Ranking and Regulating Systemic Risks," American Economic Review, American Economic Association, vol. 102(3), pages 59-64, May.
    13. Paolo Giudici & Paolo Pagnottoni, 2019. "High Frequency Price Change Spillovers in Bitcoin Markets," Risks, MDPI, vol. 7(4), pages 1-18, November.
    14. Catania, Leopoldo & Grassi, Stefano & Ravazzolo, Francesco, 2019. "Forecasting cryptocurrencies under model and parameter instability," International Journal of Forecasting, Elsevier, vol. 35(2), pages 485-501.
    15. Elendner, Hermann & Trimborn, Simon & Ong, Bobby & Lee, Teik Ming, 2016. "The cross-section of crypto-currencies as financial assets: An overview," SFB 649 Discussion Papers 2016-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. Ji, Qiang & Bouri, Elie & Lau, Chi Keung Marco & Roubaud, David, 2019. "Dynamic connectedness and integration in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 257-272.
    17. Paolo Tasca & Adam Hayes & Shaowen Liu, 2018. "The evolution of the bitcoin economy," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 19(2), pages 94-126, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fulvia Pennoni & Francesco Bartolucci & Gianfranco Forte & Ferdinando Ametrano, 2022. "Exploring the dependencies among main cryptocurrency log‐returns: A hidden Markov model," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 51(1), February.
    2. Arianna Agosto & Alessia Cafferata, 2020. "Financial Bubbles: A Study of Co-Explosivity in the Cryptocurrency Market," Risks, MDPI, vol. 8(2), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costantini, Mauro & Maaitah, Ahmad & Mishra, Tapas & Sousa, Ricardo M., 2023. "Bitcoin market networks and cyberattacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    2. Paolo Giudici & Laura Parisi, 2018. "CoRisk: Credit Risk Contagion with Correlation Network Models," Risks, MDPI, vol. 6(3), pages 1-19, September.
    3. Andrieş, Alin Marius & Ongena, Steven & Sprincean, Nicu & Tunaru, Radu, 2022. "Risk spillovers and interconnectedness between systemically important institutions," Journal of Financial Stability, Elsevier, vol. 58(C).
    4. Paolo Giudici & Laura Parisi, 2019. "Bail-In or Bail-Out? Correlation Networks to Measure the Systemic Implications of Bank Resolution," Risks, MDPI, vol. 7(1), pages 1-25, January.
    5. Giada Adelfio & Arianna Agosto & Marcello Chiodi & Paolo Giudici, 2021. "Financial contagion through space-time point processes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 665-688, June.
    6. Paolo Giudici & Laura Parisi, 2016. "CoRisk: measuring systemic risk through default probability contagion," DEM Working Papers Series 116, University of Pavia, Department of Economics and Management.
    7. Giudici, Paolo, 2018. "Financial data science," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 160-164.
    8. Giudici, Paolo & Abu-Hashish, Iman, 2019. "What determines bitcoin exchange prices? A network VAR approach," Finance Research Letters, Elsevier, vol. 28(C), pages 309-318.
    9. Arianna Agosto & Alessia Cafferata, 2020. "Financial Bubbles: A Study of Co-Explosivity in the Cryptocurrency Market," Risks, MDPI, vol. 8(2), pages 1-14, April.
    10. Paolo Giudici & Laura Parisi, 2016. "Bail in or Bail out? The Atlante example from a systemic risk perspective," DEM Working Papers Series 124, University of Pavia, Department of Economics and Management.
    11. Paolo Giudici & Laura Parisi, 2015. "Modeling Systemic Risk with Correlated Stochastic Processes," DEM Working Papers Series 110, University of Pavia, Department of Economics and Management.
    12. Imen Bedoui-Belghith & Slaheddine Hallara & Faouzi Jilani, 2023. "Crisis transmission degree measurement under crisis propagation model," SN Business & Economics, Springer, vol. 3(1), pages 1-27, January.
    13. Ahelegbey, Daniel Felix & Cerchiello, Paola & Scaramozzino, Roberta, 2022. "Network based evidence of the financial impact of Covid-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 81(C).
    14. Covi, Giovanni & Gorpe, Mehmet Ziya & Kok, Christoffer, 2021. "CoMap: Mapping Contagion in the Euro Area Banking Sector," Journal of Financial Stability, Elsevier, vol. 53(C).
    15. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
    16. Pagnottoni, Paolo & Spelta, Alessandro & Pecora, Nicolò & Flori, Andrea & Pammolli, Fabio, 2021. "Financial earthquakes: SARS-CoV-2 news shock propagation in stock and sovereign bond markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    17. Paolo Giudici & Paolo Pagnottoni, 2019. "High Frequency Price Change Spillovers in Bitcoin Markets," Risks, MDPI, vol. 7(4), pages 1-18, November.
    18. Giudici, Paolo & Leach, Thomas & Pagnottoni, Paolo, 2022. "Libra or Librae? Basket based stablecoins to mitigate foreign exchange volatility spillovers," Finance Research Letters, Elsevier, vol. 44(C).
    19. Agosto, Arianna & Cerchiello, Paola & Pagnottoni, Paolo, 2022. "Sentiment, Google queries and explosivity in the cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    20. Paolo Giudici & Peter Sarlin & Alessandro Spelta, 2016. "The multivariate nature of systemic risk: direct and common exposures," DEM Working Papers Series 118, University of Pavia, Department of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:8:y:2020:i:1:p:4-:d:305277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.