Forecasting Cryptocurrencies Log-Returns: a LASSO-VAR and Sentiment Approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hanna Halaburda & Guillaume Haeringer & Joshua Gans & Neil Gandal, 2022.
"The Microeconomics of Cryptocurrencies,"
Journal of Economic Literature, American Economic Association, vol. 60(3), pages 971-1013, September.
- Hanna Halaburda & Guillaume Haeringer & Joshua S. Gans & Neil Gandal, 2020. "The Microeconomics of Cryptocurrencies," NBER Working Papers 27477, National Bureau of Economic Research, Inc.
- Hanna Halaburda & Guillaume Haeringer & Joshua Gans & Neil Gandal, 2021. "The Microeconomics of Cryptocurrencies," CESifo Working Paper Series 8841, CESifo.
- Gandal, Neil & Halaburda, Hanna & Haeringer, Guillaume & Gans, Joshua, 2020. "The Microeconomics of Cryptocurrencies," CEPR Discussion Papers 14972, C.E.P.R. Discussion Papers.
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Reichlin, Lucrezia & Giannone, Domenico & Banbura, Marta, 2007. "Bayesian VARs with Large Panels," CEPR Discussion Papers 6326, C.E.P.R. Discussion Papers.
- Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
- Giannone, Domenico & Reichlin, Lucrezia & Bańbura, Marta, 2008. "Large Bayesian VARs," Working Paper Series 966, European Central Bank.
- Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014.
"High-Dimensional Methods and Inference on Structural and Treatment Effects,"
Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "High dimensional methods and inference on structural and treatment effects," CeMMAP working papers CWP59/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "High dimensional methods and inference on structural and treatment effects," CeMMAP working papers 59/13, Institute for Fiscal Studies.
- Muhammad Ali Nasir & Toan Luu Duc Huynh & Sang Phu Nguyen & Duy Duong, 2019. "Forecasting cryptocurrency returns and volume using search engines," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-13, December.
- Wei Zhang & Pengfei Wang & Xiao Li & Dehua Shen, 2018. "Multifractal Detrended Cross-Correlation Analysis of the Return-Volume Relationship of Bitcoin Market," Complexity, Hindawi, vol. 2018, pages 1-20, July.
- West, Kenneth D, 1996.
"Asymptotic Inference about Predictive Ability,"
Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
- West, K.D., 1994. "Asymptotic Inference About Predictive Ability," Working papers 9417, Wisconsin Madison - Social Systems.
- Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, University Library of Munich, Germany.
- Muhammad Naeem & Kashif Saleem & Sheraz Ahmed & Naeem Muhammad & Faisal Mustafa & Papavassiliou Vassilios, 2020. "Extreme return-volume relationship in cryptocurrencies: Tail dependence analysis," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1834175-183, January.
- Catania, Leopoldo & Grassi, Stefano & Ravazzolo, Francesco, 2019. "Forecasting cryptocurrencies under model and parameter instability," International Journal of Forecasting, Elsevier, vol. 35(2), pages 485-501.
- Aslanidis, Nektarios & Bariviera, Aurelio F. & López, Óscar G., 2022.
"The link between cryptocurrencies and Google Trends attention,"
Finance Research Letters, Elsevier, vol. 47(PA).
- Aslanidis, Nektarios & Fernández Bariviera, Aurelio & López, Óscar G., 2021. "The link between cryptocurrencies and Google Trends attention," Working Papers 2072/534919, Universitat Rovira i Virgili, Department of Economics.
- Neil Gandal & Hanna Halaburda, 2016. "Can We Predict the Winner in a Market with Network Effects? Competition in Cryptocurrency Market," Games, MDPI, vol. 7(3), pages 1-21, July.
- Sun, Xiaolei & Liu, Mingxi & Sima, Zeqian, 2020. "A novel cryptocurrency price trend forecasting model based on LightGBM," Finance Research Letters, Elsevier, vol. 32(C).
- Guillermo Llorente & Roni Michaely & Gideon Saar & Jiang Wang, 2002.
"Dynamic Volume-Return Relation of Individual Stocks,"
The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1005-1047.
- Guillermo Llorente & Roni Michaely & Gideon Saar & Jiang Wang, 2001. "Dynamic Volume-Return Relation of Individual Stocks," NBER Working Papers 8312, National Bureau of Economic Research, Inc.
- Chan, Stephen & Chu, Jeffrey & Zhang, Yuanyuan & Nadarajah, Saralees, 2022. "An extreme value analysis of the tail relationships between returns and volumes for high frequency cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Marta Bańbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92, January.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
- Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017.
"Can volume predict Bitcoin returns and volatility? A quantiles-based approach,"
Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
- Mehmet Balcilar & Elie Bouri & Rangan Gupta & David Roubaud, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Post-Print hal-02008551, HAL.
- Clark, Todd & McCracken, Michael, 2013.
"Advances in Forecast Evaluation,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201,
Elsevier.
- Todd E. Clark & Michael W. McCracken, 2011. "Advances in forecast evaluation," Working Papers 2011-025, Federal Reserve Bank of St. Louis.
- Todd E. Clark & Michael W. McCracken, 2011. "Advances in forecast evaluation," Working Papers (Old Series) 1120, Federal Reserve Bank of Cleveland.
- Granger, C. W. J., 1980. "Testing for causality : A personal viewpoint," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 329-352, May.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
- Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
- Daniel, Kent & Hirshleifer, David & Teoh, Siew Hong, 2002. "Investor psychology in capital markets: evidence and policy implications," Journal of Monetary Economics, Elsevier, vol. 49(1), pages 139-209, January.
- Dante Miller & Jong-Min Kim, 2021. "Univariate and Multivariate Machine Learning Forecasting Models on the Price Returns of Cryptocurrencies," JRFM, MDPI, vol. 14(10), pages 1-10, October.
- Kraaijeveld, Olivier & De Smedt, Johannes, 2020. "The predictive power of public Twitter sentiment for forecasting cryptocurrency prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005.
"Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the effects of monetary policy: a factor-augmented vector autoregressive (FAVAR) approach," Finance and Economics Discussion Series 2004-03, Board of Governors of the Federal Reserve System (U.S.).
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," NBER Working Papers 10220, National Bureau of Economic Research, Inc.
- Maria Glenski & Tim Weninger & Svitlana Volkova, 2019. "Improved Forecasting of Cryptocurrency Price using Social Signals," Papers 1907.00558, arXiv.org.
- repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
- Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Korobilis, Dimitris & Pettenuzzo, Davide, 2019.
"Adaptive hierarchical priors for high-dimensional vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 241-271.
- Dimitris Korobilis & Davide Pettenuzzo, 2017. "Adaptive Hierarchical Priors for High-Dimensional Vector Autoregessions," Working Papers 115, Brandeis University, Department of Economics and International Business School.
- Dimitris Korobilis & Davide Pettenuzzo, 2018. "Adaptive Hierarchical Priors for High-Dimensional Vector Autoregressions," Working Paper series 18-21, Rimini Centre for Economic Analysis.
- Koop, Gary & Korobilis, Dimitris & Pettenuzzo, Davide, 2019.
"Bayesian compressed vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 135-154.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2016. "Bayesian Compressed Vector Autoregressions," Working Papers 2016_09, Business School - Economics, University of Glasgow.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2016. "Bayesian Compressed Vector Autoregressions," Working Papers 103, Brandeis University, Department of Economics and International Business School.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2017. "Bayesian Compressed Vector Autoregressions," Working Paper series 17-32, Rimini Centre for Economic Analysis.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2016. "Bayesian Compressed Vector Autoregressions," Working Papers 103R, Brandeis University, Department of Economics and International Business School, revised Apr 2016.
- Alain Hecq & Luca Margaritella & Stephan Smeekes, 2023.
"Granger Causality Testing in High-Dimensional VARs: A Post-Double-Selection Procedure,"
Journal of Financial Econometrics, Oxford University Press, vol. 21(3), pages 915-958.
- Alain Hecq & Luca Margaritella & Stephan Smeekes, 2019. "Granger Causality Testing in High-Dimensional VARs: a Post-Double-Selection Procedure," Papers 1902.10991, arXiv.org, revised Dec 2020.
- Tallman, Ellis W. & Zaman, Saeed, 2020.
"Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy,"
International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
- Ellis W. Tallman & Saeed Zaman, 2018. "Combining Survey Long-Run Forecasts and Nowcasts with BVAR Forecasts Using Relative Entropy," Working Papers (Old Series) 1809, Federal Reserve Bank of Cleveland.
- Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Papers (Old Series) 1227, Federal Reserve Bank of Cleveland.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2013. "Real-Time Nowcasting with a Bayesian Mixed Frequency Model with Stochastic Volatility," CEPR Discussion Papers 9312, C.E.P.R. Discussion Papers.
- Mandalinci, Zeyyad, 2017.
"Forecasting inflation in emerging markets: An evaluation of alternative models,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
- Zeyyad Mandalinci, 2015. "Forecasting Inflation in Emerging Markets: An Evaluation of Alternative Models," CReMFi Discussion Papers 3, CReMFi, School of Economics and Finance, QMUL.
- Skripnikov, A. & Michailidis, G., 2019. "Joint estimation of multiple network Granger causal models," Econometrics and Statistics, Elsevier, vol. 10(C), pages 120-133.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016.
"Common Drifting Volatility in Large Bayesian VARs,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2012. "Common Drifting Volatility in Large Bayesian VARs," CEPR Discussion Papers 8894, C.E.P.R. Discussion Papers.
- Andrea CARRIERO & Todd E. CLARK & Massimiliano MARCELLINO, 2012. "Common Drifting Volatility in Large Bayesian VARs," Economics Working Papers ECO2012/08, European University Institute.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Common drifting volatility in large Bayesian VARs," Working Papers (Old Series) 1206, Federal Reserve Bank of Cleveland.
- Balcilar, Mehmet & Katzke, Nico & Gupta, Rangan, 2017.
"Do precious metal prices help in forecasting South African inflation?,"
The North American Journal of Economics and Finance, Elsevier, vol. 40(C), pages 63-72.
- Mehmet Balcilar & Nico Katzke & Rangan Gupta, 2015. "Do Precious Metal Prices Help in Forecasting South African Inflation?," Working Papers 03/2015, Stellenbosch University, Department of Economics.
- Mehmet Balcilar & NICO KATZKE & Rangan Gupta, 2015. "Do Precious Metal Prices Help in Forecasting South African Inflation?," Working Papers 15-05, Eastern Mediterranean University, Department of Economics.
- Mehmet Balcilar & Nico Katzke & Rangan Gupta, 2015. "Do Precious Metal Prices Help in Forecasting South African Inflation?," Working Papers 201510, University of Pretoria, Department of Economics.
- Dimitrios P. Louzis, 2017. "Macroeconomic and credit forecasts during the Greek crisis using Bayesian VARs," Empirical Economics, Springer, vol. 53(2), pages 569-598, September.
- Marta Banbura & Andries van Vlodrop, 2018. "Forecasting with Bayesian Vector Autoregressions with Time Variation in the Mean," Tinbergen Institute Discussion Papers 18-025/IV, Tinbergen Institute.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Bekiros Stelios & Paccagnini Alessia, 2015.
"Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
- Stelios D. Bekiros & Alessia Paccagnini, 2014. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Open Access publications 10197/7588, School of Economics, University College Dublin.
- Carriero, Andrea & Mumtaz, Haroon & Theophilopoulou, Angeliki, 2015. "Macroeconomic information, structural change, and the prediction of fiscal aggregates," International Journal of Forecasting, Elsevier, vol. 31(2), pages 325-348.
- Knotek, Edward S. & Zaman, Saeed, 2019.
"Financial nowcasts and their usefulness in macroeconomic forecasting,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1708-1724.
- Edward S. Knotek & Saeed Zaman, 2017. "Financial Nowcasts and Their Usefulness in Macroeconomic Forecasting," Working Papers (Old Series) 1702, Federal Reserve Bank of Cleveland.
- Bouri, Elie & Christou, Christina & Gupta, Rangan, 2022.
"Forecasting returns of major cryptocurrencies: Evidence from regime-switching factor models,"
Finance Research Letters, Elsevier, vol. 49(C).
- Elie Bouri & Christina Christou & Rangan Gupta, 2022. "Forecasting Returns of Major Cryptocurrencies: Evidence from Regime-Switching Factor Models," Working Papers 202213, University of Pretoria, Department of Economics.
- Tesi Aliaj & Milos Ciganovic & Massimiliano Tancioni, 2023. "Nowcasting inflation with Lasso‐regularized vector autoregressions and mixed frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 464-480, April.
- Nuray Tosunoğlu & Hilal Abacı & Gizem Ateş & Neslihan Saygılı Akkaya, 2023. "Artificial neural network analysis of the day of the week anomaly in cryptocurrencies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-24, December.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2022-11-07 (Big Data)
- NEP-FOR-2022-11-07 (Forecasting)
- NEP-PAY-2022-11-07 (Payment Systems and Financial Technology)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2210.00883. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.