My bibliography
Save this item
A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Baumeister, Christiane & Guérin, Pierre, 2021.
"A comparison of monthly global indicators for forecasting growth,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," NBER Working Papers 28014, National Bureau of Economic Research, Inc.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CESifo Working Paper Series 8656, CESifo.
- Christiane Baumeister & Pierre Guérin, 2020. "A comparison of monthly global indicators for forecasting growth," CAMA Working Papers 2020-93, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Baumeister, Christiane & Guerin, Pierre, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CEPR Discussion Papers 15403, C.E.P.R. Discussion Papers.
- Markus Heinrich & Magnus Reif, 2018. "Forecasting using mixed-frequency VARs with time-varying parameters," ifo Working Paper Series 273, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Jos Jansen & Jasper de Winter, 2016. "Improving model-based near-term GDP forecasts by subjective forecasts: A real-time exercise for the G7 countries," DNB Working Papers 507, Netherlands Central Bank, Research Department.
- Mikosch, Heiner & Solanko, Laura, 2017. "Should one follow movements in the oil price or in money supply? Forecasting quarterly GDP growth in Russia with higher-frequency indicators," BOFIT Discussion Papers 19/2017, Bank of Finland Institute for Emerging Economies (BOFIT).
- Schwarzmüller, Tim, 2015. "Model pooling and changes in the informational content of predictors: An empirical investigation for the euro area," Kiel Working Papers 1982, Kiel Institute for the World Economy (IfW Kiel).
- Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017.
"The role of indicator selection in nowcasting euro-area GDP in pseudo-real time,"
Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
- A. Girardi & R. Golinelli & C. Pappalardo, 2014. "The Role of Indicator Selection in Nowcasting Euro Area GDP in Pseudo Real Time," Working Papers wp919, Dipartimento Scienze Economiche, Universita' di Bologna.
- Takashi Nakazawa, 2022. "Constructing GDP Nowcasting Models Using Alternative Data," Bank of Japan Working Paper Series 22-E-9, Bank of Japan.
- Kyosuke Chikamatsu, Naohisa Hirakata, Yosuke Kido, Kazuki Otaka, 2018. "Nowcasting Japanese GDPs," Bank of Japan Working Paper Series 18-E-18, Bank of Japan.
- Kohns, David & Bhattacharjee, Arnab, 2023.
"Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
- David Kohns & Arnab Bhattacharjee, 2020. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," Papers 2011.00938, arXiv.org, revised May 2022.
- Bhattacharjee, Arnab & Kohns, David, 2022. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," National Institute of Economic and Social Research (NIESR) Discussion Papers 538, National Institute of Economic and Social Research.
- Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
- David Kohns & Arnab Bhattacharjee, 2019. "Interpreting Big Data in the Macro Economy: A Bayesian Mixed Frequency Estimator," CEERP Working Paper Series 010, Centre for Energy Economics Research and Policy, Heriot-Watt University.
- Duarte, Cláudia & Rodrigues, Paulo M.M. & Rua, António, 2017. "A mixed frequency approach to the forecasting of private consumption with ATM/POS data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 61-75.
- Heiner Mikosch & Laura Solanko, 2019. "Forecasting Quarterly Russian GDP Growth with Mixed-Frequency Data," Russian Journal of Money and Finance, Bank of Russia, vol. 78(1), pages 19-35, March.
- Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021.
"Factor extraction using Kalman filter and smoothing: This is not just another survey,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
- Poncela Blanco, Maria Pilar, 2020. "Factor extraction using Kalman filter and smoothing: this is not just another survey," DES - Working Papers. Statistics and Econometrics. WS 30644, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Kapetanios, George & Marcellino, Massimiliano & Papailias, Fotis, 2016. "Forecasting inflation and GDP growth using heuristic optimisation of information criteria and variable reduction methods," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 369-382.
- Tommaso Proietti & Alessandro Giovannelli, 2021.
"Nowcasting monthly GDP with big data: A model averaging approach,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 683-706, April.
- Tommaso Proietti & Alessandro Giovannelli, 2020. "Nowcasting Monthly GDP with Big Data: a Model Averaging Approach," CEIS Research Paper 482, Tor Vergata University, CEIS, revised 12 May 2020.
- George Kapetanios & Fotis Papailias, 2018. "Big Data & Macroeconomic Nowcasting: Methodological Review," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-12, Economic Statistics Centre of Excellence (ESCoE).
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, March.
- Christian Glocker & Serguei Kaniovski, 2022.
"Macroeconometric forecasting using a cluster of dynamic factor models,"
Empirical Economics, Springer, vol. 63(1), pages 43-91, July.
- Christian Glocker & Serguei Kaniovski, 2020. "Macroeconometric Forecasting Using a Cluster of Dynamic Factor Models," WIFO Working Papers 614, WIFO.
- Gani Ramadani & Magdalena Petrovska & Vesna Bucevska, 2021. "Evaluation of mixed frequency approaches for tracking near-term economic developments in North Macedonia," Working Papers 2021-03, National Bank of the Republic of North Macedonia.
- Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
- Alain Galli & Christian Hepenstrick & Rolf Scheufele, 2019.
"Mixed-Frequency Models for Tracking Short-Term Economic Developments in Switzerland,"
International Journal of Central Banking, International Journal of Central Banking, vol. 15(2), pages 151-178, June.
- Alain Galli & Christian Hepenstrick & Rolf Scheufele, 2017. "Mixed-frequency models for tracking short-term economic developments in Switzerland," Working Papers 2017-02, Swiss National Bank.
- Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018.
"Combined Density Nowcasting in an Uncertain Economic Environment,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an Uncertain Economic Environment," Tinbergen Institute Discussion Papers 14-152/III, Tinbergen Institute.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an uncertain economic environment," Working Paper 2014/17, Norges Bank.
- Götz, Thomas B. & Knetsch, Thomas A., 2019.
"Google data in bridge equation models for German GDP,"
International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
- Götz, Thomas B. & Knetsch, Thomas A., 2017. "Google data in bridge equation models for German GDP," Discussion Papers 18/2017, Deutsche Bundesbank.
- Alejo Estavillo & Gabriela Mordecki, 2023. "Nowcasting del PIB para Uruguay en base a un modelo de ecuaciones puente," Documentos de Trabajo (working papers) 23-26, Instituto de EconomÃa - IECON.
- Katja Heinisch & Rolf Scheufele, 2019.
"Should Forecasters Use Real‐Time Data to Evaluate Leading Indicator Models for GDP Prediction? German Evidence,"
German Economic Review, Verein für Socialpolitik, vol. 20(4), pages 170-200, November.
- Heinisch Katja & Scheufele Rolf, 2019. "Should Forecasters Use Real-Time Data to Evaluate Leading Indicator Models for GDP Prediction? German Evidence," German Economic Review, De Gruyter, vol. 20(4), pages 170-200, December.
- Heinisch, Katja & Scheufele, Rolf, 2017. "Should forecasters use real-time data to evaluate leading indicator models for GDP prediction? German evidence," IWH Discussion Papers 5/2017, Halle Institute for Economic Research (IWH).
- Pirschel, Inske, 2016. "Forecasting euro area recessions in real-time," Kiel Working Papers 2020, Kiel Institute for the World Economy (IfW Kiel).
- Luke Mosley & Tak-Shing Chan & Alex Gibberd, 2023. "sparseDFM: An R Package to Estimate Dynamic Factor Models with Sparse Loadings," Papers 2303.14125, arXiv.org.
- Garciga, Christian & Knotek II, Edward S., 2019. "Forecasting GDP growth with NIPA aggregates: In search of core GDP," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1814-1828.
- Proietti, Tommaso & Giovannelli, Alessandro & Ricchi, Ottavio & Citton, Ambra & Tegami, Christían & Tinti, Cristina, 2021.
"Nowcasting GDP and its components in a data-rich environment: The merits of the indirect approach,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1376-1398.
- Alessandro Giovannelli & Tommaso Proietti & Ambra Citton & Ottavio Ricchi & Cristian Tegami & Cristina Tinti, 2020. "Nowcasting GDP and its Components in a Data-rich Environment: the Merits of the Indirect Approach," CEIS Research Paper 489, Tor Vergata University, CEIS, revised 30 May 2020.
- Joan Paredes & Javier J. Pérez & Gabriel Perez Quiros, 2023.
"Fiscal targets. A guide to forecasters?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 472-492, June.
- Joan Paredes & Javier J. Pérez & Gabriel Perez-Quirós, 2015. "Fiscal targets. A guide to forecasters?," Working Papers 1508, Banco de España.
- Pérez Quirós, Gabriel & Pérez, Javier J. & Paredes, Joan, 2015. "Fiscal targets. A guide to forecasters?," Working Paper Series 1834, European Central Bank.
- Pérez-Quirós, Gabriel & Pérez, Javier J & Paredes, Joan, 2015. "Fiscal targets. A guide to forecasters?," CEPR Discussion Papers 10553, C.E.P.R. Discussion Papers.
- Rudrani Bhattacharya & Bornali Bhandari & Sudipto Mundle, 2023. "Nowcasting India’s Quarterly GDP Growth: A Factor-Augmented Time-Varying Coefficient Regression Model (FA-TVCRM)," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(1), pages 213-234, March.
- Luke Hartigan & Tom Rosewall, 2024.
"Nowcasting Quarterly GDP Growth during the COVID-19 Crisis Using a Monthly Activity Indicator,"
Working Papers
2024-15, University of Sydney, School of Economics.
- Luke Hartigan & Tom Rosewall, 2024. "Nowcasting Quarterly GDP Growth during the COVID-19 Crisis Using a Monthly Activity Indicator," RBA Research Discussion Papers rdp2024-04, Reserve Bank of Australia.
- Jack Fosten & Daniel Gutknecht, 2021. "Horizon confidence sets," Empirical Economics, Springer, vol. 61(2), pages 667-692, August.
- Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2020. "Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 176-197, March.
- Ramadani Gani & Petrovska Magdalena & Bucevska Vesna, 2021. "Evaluation of Mixed Frequency Approaches for Tracking Near-Term Economic Developments in North Macedonia," South East European Journal of Economics and Business, Sciendo, vol. 16(2), pages 43-52, December.
- Michal Franta & David Havrlant & Marek Rusnák, 2016.
"Forecasting Czech GDP Using Mixed-Frequency Data Models,"
Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 165-185, December.
- Michal Franta & David Havrlant & Marek Rusnak, 2014. "Forecasting Czech GDP Using Mixed-Frequency Data Models," Working Papers 2014/08, Czech National Bank.
- Hwee Kwan Chow & Yijie Fei & Daniel Han, 2023. "Forecasting GDP with many predictors in a small open economy: forecast or information pooling?," Empirical Economics, Springer, vol. 65(2), pages 805-829, August.
- Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
- Markus Heinrich & Magnus Reif, 2020. "Real-Time Forecasting Using Mixed-Frequency VARS with Time-Varying Parameters," CESifo Working Paper Series 8054, CESifo.
- Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
- Mikosch, Heiner & Solanko, Laura, 2017. "Should one follow movements in the oil price or in money supply? Forecasting quarterly GDP growth in Russia with higher-frequency indicators," BOFIT Discussion Papers 19/2017, Bank of Finland, Institute for Economies in Transition.
- Algaba, Andres & Borms, Samuel & Boudt, Kris & Verbeken, Brecht, 2023.
"Daily news sentiment and monthly surveys: A mixed-frequency dynamic factor model for nowcasting consumer confidence,"
International Journal of Forecasting, Elsevier, vol. 39(1), pages 266-278.
- Andres Algaba & Samuel Borms & Kris Boudt & Brecht Verbeken, 2021. "Daily news sentiment and monthly surveys: A mixed–frequency dynamic factor model for nowcasting consumer confidence," Working Paper Research 396, National Bank of Belgium.
- Kenichiro McAlinn, 2021. "Mixed‐frequency Bayesian predictive synthesis for economic nowcasting," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1143-1163, November.
- Hassani, Hossein & Rua, António & Silva, Emmanuel Sirimal & Thomakos, Dimitrios, 2019.
"Monthly forecasting of GDP with mixed-frequency multivariate singular spectrum analysis,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1263-1272.
- António Rua & Hossein Hassani, 2019. "Monthly Forecasting of GDP with Mixed Frequency Multivariate Singular Spectrum Analysis," Working Papers w201913, Banco de Portugal, Economics and Research Department.
- Edmond H. C. Wu & Jihao Hu & Rui Chen, 2022. "Monitoring and forecasting COVID-19 impacts on hotel occupancy rates with daily visitor arrivals and search queries," Current Issues in Tourism, Taylor & Francis Journals, vol. 25(3), pages 490-507, February.
- Saiz, Lorena & Ashwin, Julian & Kalamara, Eleni, 2021. "Nowcasting euro area GDP with news sentiment: a tale of two crises," Working Paper Series 2616, European Central Bank.
- Yang, Jianlei & Yang, Chunpeng, 2021. "The impact of mixed-frequency geopolitical risk on stock market returns," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 226-240.
- Pinkwart, Nicolas, 2018. "Short-term forecasting economic activity in Germany: A supply and demand side system of bridge equations," Discussion Papers 36/2018, Deutsche Bundesbank.
- Bantis, Evripidis & Clements, Michael P. & Urquhart, Andrew, 2023. "Forecasting GDP growth rates in the United States and Brazil using Google Trends," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1909-1924.
- Alain Hecq & Marie Ternes & Ines Wilms, 2021. "Hierarchical Regularizers for Mixed-Frequency Vector Autoregressions," Papers 2102.11780, arXiv.org, revised Mar 2022.
- Xianning WANG & Jingrong DONG & Zhi XIAO & Guanjie HE, 2019. "A novel spatial mixed frequency forecasting model with application to Chinese regional GDP," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 54-77, June.
- Fornaro, Paolo, 2016. "Predicting Finnish economic activity using firm-level data," International Journal of Forecasting, Elsevier, vol. 32(1), pages 10-19.
- Alina Stundziene & Vaida Pilinkiene & Jurgita Bruneckiene & Andrius Grybauskas & Mantas Lukauskas & Irena Pekarskiene, 2024. "Future directions in nowcasting economic activity: A systematic literature review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(4), pages 1199-1233, September.
- Alejandro Fernández Cerezo, 2023. "A supply-side GDP nowcasting model," Economic Bulletin, Banco de España, issue 2023/Q1.
- Jansen, W. Jos & Jin, Xiaowen & de Winter, Jasper M., 2016.
"Forecasting and nowcasting real GDP: Comparing statistical models and subjective forecasts,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 411-436.
- Jos Jansen, W. & Jin, Xiaowen & Winter, Jasper M. de, 2016. "Forecasting and nowcasting real GDP: Comparing statistical models and subjective forecasts," Munich Reprints in Economics 43488, University of Munich, Department of Economics.
- Stavros Degiannakis, 2023.
"The D-model for GDP nowcasting,"
Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-33, December.
- Stavros Degiannakis, 2023. "The D-model for GDP nowcasting," Working Papers 317, Bank of Greece.
- Daniel Borup & David E. Rapach & Erik Christian Montes Schütte, 2021. "Now- and Backcasting Initial Claims with High-Dimensional Daily Internet Search-Volume Data," CREATES Research Papers 2021-02, Department of Economics and Business Economics, Aarhus University.
- Cláudia Duarte, 2016. "A Mixed Frequency Approach to Forecast Private Consumption with ATM/POS Data," Working Papers w201601, Banco de Portugal, Economics and Research Department.
- Liu, Ying & Wen, Long & Liu, Han & Song, Haiyan, 2024. "Predicting tourism recovery from COVID-19: A time-varying perspective," Economic Modelling, Elsevier, vol. 135(C).
- Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2015.
"Markov-switching mixed-frequency VAR models,"
International Journal of Forecasting, Elsevier, vol. 31(3), pages 692-711.
- Marcellino, Massimiliano & Foroni, Claudia, 2014. "Markov-Switching Mixed-Frequency VAR Models," CEPR Discussion Papers 9815, C.E.P.R. Discussion Papers.
- Serena Ng & Susannah Scanlan, 2023. "Constructing High Frequency Economic Indicators by Imputation," Papers 2303.01863, arXiv.org, revised Oct 2023.
- Gong, Xu & Sun, Yi & Du, Zhili, 2022. "Geopolitical risk and China's oil security," Energy Policy, Elsevier, vol. 163(C).
- Chikamatsu, Kyosuke & Hirakata, Naohisa & Kido, Yosuke & Otaka, Kazuki, 2021. "Mixed-frequency approaches to nowcasting GDP: An application to Japan," Japan and the World Economy, Elsevier, vol. 57(C).
- Alain Hecq & Marie Ternes & Ines Wilms, 2023. "Hierarchical Regularizers for Reverse Unrestricted Mixed Data Sampling Regressions," Papers 2301.10592, arXiv.org, revised Nov 2024.
- Donato Ceci & Orest Prifti & Andrea Silvestrini, 2024. "Nowcasting Italian GDP growth: a Factor MIDAS approach," Temi di discussione (Economic working papers) 1446, Bank of Italy, Economic Research and International Relations Area.
- Nicoletta Pashourtidou & Christos Papamichael & Charalampos Karagiannakis, 2018. "Forecasting economic activity in sectors of the Cypriot economy," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 12(2), pages 24-66, December.
- Lin, Jiahe & Michailidis, George, 2024. "A multi-task encoder-dual-decoder framework for mixed frequency data prediction," International Journal of Forecasting, Elsevier, vol. 40(3), pages 942-957.
- Alessandro Giovannelli & Marco Lippi & Tommaso Proietti, 2023.
"Band-Pass Filtering with High-Dimensional Time Series,"
Papers
2305.06618, arXiv.org.
- Alessandro Giovannelli & Marco Lippi & Tommaso Proietti, 2023. "Band-Pass Filtering with High-Dimensional Time Series," CEIS Research Paper 559, Tor Vergata University, CEIS, revised 15 Jun 2023.
- Konstantin Kuck & Karsten Schweikert, 2021. "Forecasting Baden‐Württemberg's GDP growth: MIDAS regressions versus dynamic mixed‐frequency factor models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 861-882, August.
- Heinisch, Katja, 2016. "A real-time analysis on the importance of hard and soft data for nowcasting German GDP," VfS Annual Conference 2016 (Augsburg): Demographic Change 145864, Verein für Socialpolitik / German Economic Association.
- Emami Javanmard, Majid & Tang, Yili & Martínez-Hernández, J. Adrián, 2024. "Forecasting air transportation demand and its impacts on energy consumption and emission," Applied Energy, Elsevier, vol. 364(C).
- repec:ptu:bdpart:r201613 is not listed on IDEAS
- Julian Ashwin & Eleni Kalamara & Lorena Saiz, 2024. "Nowcasting Euro area GDP with news sentiment: A tale of two crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 887-905, August.
- Christiana Anaxagorou & Nicoletta Pashourtidou, 2022. "Forecasting economic activity using preselected predictors: the case of Cyprus," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 16(1), pages 11-36, June.
- Barış Soybilgen & M. Ege Yazgan & Hüseyin Kaya, 2023. "Nowcasting Turkish Food Inflation Using Daily Online Prices," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(2), pages 171-190, September.
- Gary Koop & Stuart McIntyre & James Mitchell, 2020. "UK regional nowcasting using a mixed frequency vector auto‐regressive model with entropic tilting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 91-119, January.
- Pirschel, Inske, 2015. "Forecasting Euro Area Recessions in real-time with a mixed-frequency Bayesian VAR," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113031, Verein für Socialpolitik / German Economic Association.
- Kohns, David & Potjagailo, Galina, 2023. "Flexible Bayesian MIDAS: time‑variation, group‑shrinkage and sparsity," Bank of England working papers 1025, Bank of England.
- repec:zbw:bofitp:2017_019 is not listed on IDEAS
- Ruey Yau & C. James Hueng, 2019. "Nowcasting GDP Growth for Small Open Economies with a Mixed-Frequency Structural Model," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 177-198, June.
- Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
- Cláudia Duarte & Sónia Cabral, 2016. "Nowcasting Portuguese tourism exports," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
- Borup, Daniel & Rapach, David E. & Schütte, Erik Christian Montes, 2023. "Mixed-frequency machine learning: Nowcasting and backcasting weekly initial claims with daily internet search volume data," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1122-1144.