IDEAS home Printed from https://ideas.repec.org/r/eee/intfin/v62y2019icp184-202.html
   My bibliography  Save this item

Realized correlations, betas and volatility spillover in the agricultural commodity market: What has changed?

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024. "Forecasting the realized volatility of agricultural commodity prices: Does sentiment matter?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2088-2125, September.
  2. Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price," Sustainability, MDPI, vol. 12(10), pages 1-11, May.
  3. Awasthi, Kritika & Ahmad, Wasim & Rahman, Abdul & Phani, B.V., 2020. "When US sneezes, clichés spread: How do the commodity index funds react then?," Resources Policy, Elsevier, vol. 69(C).
  4. Xinyu Yuan & Jiechen Tang & Wing-Keung Wong & Songsak Sriboonchitta, 2020. "Modeling Co-Movement among Different Agricultural Commodity Markets: A Copula-GARCH Approach," Sustainability, MDPI, vol. 12(1), pages 1-17, January.
  5. Sheng, Xin & Marfatia, Hardik A. & Gupta, Rangan & Ji, Qiang, 2021. "House price synchronization across the US states: The role of structural oil shocks," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
  6. Kinateder, Harald & Campbell, Ross & Choudhury, Tonmoy, 2021. "Safe haven in GFC versus COVID-19: 100 turbulent days in the financial markets," Finance Research Letters, Elsevier, vol. 43(C).
  7. Fava, Santino Del & Gupta, Rangan & Pierdzioch, Christian & Rognone, Lavinia, 2024. "Forecasting international financial stress: The role of climate risks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 92(C).
  8. Bonato, Matteo & Gupta, Rangan & Lau, Chi Keung Marco & Wang, Shixuan, 2020. "Moments-based spillovers across gold and oil markets," Energy Economics, Elsevier, vol. 89(C).
  9. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian & Yoon, Seong-Min, 2021. "OPEC news and jumps in the oil market," Energy Economics, Elsevier, vol. 96(C).
  10. Rangan Gupta & Syed Jawad Hussain Shahzad & Xin Sheng & Sowmya Subramaniam, 2023. "The role of oil and risk shocks in the high‐frequency movements of the term structure of interest rates: Evidence from the U.S. Treasury market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1845-1857, April.
  11. Rangan Gupta & Christian Pierdzioch, 2024. "Multi-Task Forecasting of the Realized Volatilities of Agricultural Commodity Prices," Mathematics, MDPI, vol. 12(18), pages 1-26, September.
  12. Yongmin Zhang & Yiru Sun & Haili Shi & Shusheng Ding & Yingxue Zhao, 2024. "COVID-19, the Russia–Ukraine war and the connectedness between the U.S. and Chinese agricultural futures markets," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
  13. Afees A. Salisu & Rangan Gupta & Elie Bouri & Qiang Ji, 2022. "Mixed‐frequency forecasting of crude oil volatility based on the information content of global economic conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 134-157, January.
  14. Zhou, Wei-Xing & Dai, Yun-Shi & Duong, Kiet Tuan & Dai, Peng-Fei, 2024. "The impact of the Russia-Ukraine conflict on the extreme risk spillovers between agricultural futures and spots," Journal of Economic Behavior & Organization, Elsevier, vol. 217(C), pages 91-111.
  15. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2024. "Financial stress and realized volatility: The case of agricultural commodities," Research in International Business and Finance, Elsevier, vol. 71(C).
  16. Dejan Živkov & Boris Kuzman & Jonel Subić, 2023. "Multi-frequency downside risk interconnectedness between soft agricultural commodities," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(8), pages 332-342.
  17. Rangan Gupta & Christian Pierdzioch, 2021. "Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment," Energies, MDPI, vol. 14(23), pages 1-18, December.
  18. Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting the Volatility of Crude Oil: The Role of Uncertainty and Spillovers," Energies, MDPI, vol. 14(14), pages 1-15, July.
  19. Garcia-Jorcano, Laura & Sanchis-Marco, Lidia, 2022. "Spillover effects between commodity and stock markets: A SDSES approach," Resources Policy, Elsevier, vol. 79(C).
  20. Jiqian Wang & Rangan Gupta & Oğuzhan Çepni & Feng Ma, 2023. "Forecasting international REITs volatility: the role of oil-price uncertainty," The European Journal of Finance, Taylor & Francis Journals, vol. 29(14), pages 1579-1597, September.
  21. Salisu, Afees A. & Pierdzioch, Christian & Gupta, Rangan, 2021. "Geopolitical risk and forecastability of tail risk in the oil market: Evidence from over a century of monthly data," Energy, Elsevier, vol. 235(C).
  22. Afees A. Salisu & Rangan Gupta & Elie Bouri & Qiang Ji, 2020. "Forecasting Oil Volatility Using a GARCH-MIDAS Approach: The Role of Global Economic Conditions," Working Papers 202051, University of Pretoria, Department of Economics.
  23. Gupta, Rangan & Sheng, Xin & van Eyden, Reneé & Wohar, Mark E., 2021. "The impact of disaggregated oil shocks on state-level real housing returns of the United States: The role of oil dependence," Finance Research Letters, Elsevier, vol. 43(C).
  24. David Gabauer & Rangan Gupta & Sayar Karmakar & Joshua Nielsen, 2022. "Stock Market Bubbles and the Forecastability of Gold Returns (and Volatility)," Working Papers 202228, University of Pretoria, Department of Economics.
  25. Nazlioglu, Saban & Gupta, Rangan & Gormus, Alper & Soytas, Ugur, 2020. "Price and volatility linkages between international REITs and oil markets," Energy Economics, Elsevier, vol. 88(C).
  26. Salisu, Afees A. & Gupta, Rangan & Demirer, Riza, 2022. "Global financial cycle and the predictability of oil market volatility: Evidence from a GARCH-MIDAS model," Energy Economics, Elsevier, vol. 108(C).
  27. Semei Coronado & Rangan Gupta & Saban Nazlioglu & Omar Rojas, 2023. "Time‐varying causality between bond and oil markets of the United States: Evidence from over one and half centuries of data," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2239-2247, July.
  28. Salisu, Afees A. & Isah, Kazeem & Oloko, Tirimisiyu O., 2024. "Technology shocks and crude oil market connection: The role of climate change," Energy Economics, Elsevier, vol. 130(C).
  29. Rangan Gupta & Syed Jawad Hussain Shahzad & Xin Sheng & Sowmya Subramaniam, 2020. "The Role of Oil and Risk Shocks in the High-Frequency Movements of the Term Structure of Interest Rates of the United States," Working Papers 202063, University of Pretoria, Department of Economics.
  30. Riza Demirer & Rangan Gupta & Jacobus Nel & Christian Pierdzioch, 2020. "Effect of Rare Disaster Risks on Crude Oil: Evidence from El Nino from Over 140 Years of Data," Working Papers 2020104, University of Pretoria, Department of Economics.
  31. Matteo Bonato & Oğuzhan Çepni & Rangan Gupta & Christian Pierdzioch, 2023. "El Niño, La Niña, and forecastability of the realized variance of agricultural commodity prices: Evidence from a machine learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 785-801, July.
  32. Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil and gold volatilities with sentiment indicators under structural breaks," Energy Economics, Elsevier, vol. 105(C).
  33. Liya Hau & Huiming Zhu & Muhammad Shahbaz & Ke Huang, 2023. "Quantile Dependence between Crude Oil and China’s Biofuel Feedstock Commodity Market," Sustainability, MDPI, vol. 15(11), pages 1-17, June.
  34. Dai, Yun-Shi & Dai, Peng-Fei & Zhou, Wei-Xing, 2023. "Tail dependence structure and extreme risk spillover effects between the international agricultural futures and spot markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
  35. Salisu, Afees A. & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil prices over 150 years: The role of tail risks," Resources Policy, Elsevier, vol. 75(C).
  36. Çepni, Oğuzhan & Gupta, Rangan & Pienaar, Daniel & Pierdzioch, Christian, 2022. "Forecasting the realized variance of oil-price returns using machine learning: Is there a role for U.S. state-level uncertainty?," Energy Economics, Elsevier, vol. 114(C).
  37. Lu, Xinjie & Su, Yuandong & Huang, Dengshi, 2023. "Chinese agricultural futures volatility: New insights from potential domestic and global predictors," International Review of Financial Analysis, Elsevier, vol. 89(C).
  38. Anthony N. Rezitis & Panagiotis Andrikopoulos & Theodoros Daglis, 2024. "Assessing the asymmetric volatility linkages of energy and agricultural commodity futures during low and high volatility regimes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(3), pages 451-483, March.
  39. Konstantinos Gkillas & Christoforos Konstantatos & Costas Siriopoulos, 2021. "Uncertainty Due to Infectious Diseases and Stock–Bond Correlation," Econometrics, MDPI, vol. 9(2), pages 1-18, April.
  40. Julien Chevallier & Bilel Sanhaji, 2023. "Jump-Robust Realized-GARCH-MIDAS-X Estimators for Bitcoin and Ethereum Volatility Indices," Stats, MDPI, vol. 6(4), pages 1-32, December.
  41. Curtis McKnight & Feng Qiu & Marty Luckert & Grant Hauer, 2021. "Prices for a second‐generation biofuel industry in Canada: Market linkages between Canadian wheat and US energy and agricultural commodities," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 69(3), pages 337-351, September.
  42. Rangan Gupta & Christian Pierdzioch, 2023. "Do U.S. economic conditions at the state level predict the realized volatility of oil-price returns? A quantile machine-learning approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-22, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.