IDEAS home Printed from https://ideas.repec.org/r/eee/insuma/v22y1998i2p145-161.html
   My bibliography  Save this item

Ordering risks: Expected utility theory versus Yaari's dual theory of risk

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Chuancun Yin & Dan Zhu, 2015. "New class of distortion risk measures and their tail asymptotics with emphasis on VaR," Papers 1503.08586, arXiv.org, revised Mar 2016.
  2. Taizhong Hu & Asok K. Nanda & Huiliang Xie & Zegang Zhu, 2004. "Properties of some stochastic orders: A unified study," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(2), pages 193-216, March.
  3. Massimiliano Corradini & Andrea Gheno, 2007. "Contingent Claim Pricing In A Dual Expected Utility Theory Framework," Departmental Working Papers of Economics - University 'Roma Tre' 0082, Department of Economics - University Roma Tre.
  4. Belzunce, Félix & Pinar, José F. & Ruiz, José M. & Sordo, Miguel A., 2012. "Comparison of risks based on the expected proportional shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 292-302.
  5. van Bruggen, Paul & Laeven, Roger J. A. & van de Kuilen, Gijs, 2024. "Higher-Order Risk Attitudes for Non-Expected Utility," Discussion Paper 2024-019, Tilburg University, Center for Economic Research.
  6. Rolf Aaberge, 2009. "Ranking intersecting Lorenz curves," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 33(2), pages 235-259, August.
  7. Tommaso Lando & Lucio Bertoli-Barsotti, 2020. "Stochastic dominance relations for generalised parametric distributions obtained through composition," METRON, Springer;Sapienza Università di Roma, vol. 78(3), pages 297-311, December.
  8. Asimit, Alexandru V. & Badescu, Alexandru M. & Verdonck, Tim, 2013. "Optimal risk transfer under quantile-based risk measurers," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 252-265.
  9. Chi, Yichun, 2018. "Insurance choice under third degree stochastic dominance," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 198-205.
  10. Grigorova Miryana, 2014. "Stochastic orderings with respect to a capacity and an application to a financial optimization problem," Statistics & Risk Modeling, De Gruyter, vol. 31(2), pages 183-213, June.
  11. Landsman, Zinoviy & Vanduffel, Steven, 2011. "Bounds for some general sums of random variables," Statistics & Probability Letters, Elsevier, vol. 81(3), pages 382-391, March.
  12. Bruce L. Jones & Ricardas Zitikis, 2005. "Testing for the order of risk measures: an application of L-statistics in actuarial science," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 193-211.
  13. M. Mercè Claramunt & Maite Mármol & Xavier Varea, 2023. "Facing a Risk: To Insure or Not to Insure—An Analysis with the Constant Relative Risk Aversion Utility Function," Mathematics, MDPI, vol. 11(5), pages 1-13, February.
  14. Bosi, Gianni & Zuanon, Magali E., 2003. "Continuous representability of homothetic preorders by means of sublinear order-preserving functions," Mathematical Social Sciences, Elsevier, vol. 45(3), pages 333-341, July.
  15. Chen, Shihua & Chen, Yulin & Jebran, Khalil, 2021. "Trust and corporate social responsibility: From expected utility and social normative perspective," Journal of Business Research, Elsevier, vol. 134(C), pages 518-530.
  16. Miguel Sordo & Héctor Ramos, 2007. "Characterization of stochastic orders by L-functionals," Statistical Papers, Springer, vol. 48(2), pages 249-263, April.
  17. Christian Gourieroux & Wei Liu, 2006. "Efficient Portfolio Analysis Using Distortion Risk Measures," Working Papers 2006-17, Center for Research in Economics and Statistics.
  18. Fabio Maccheroni & Pietro Muliere & Claudio Zoli, 2005. "Inverse stochastic orders and generalized Gini functionals," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 529-559.
  19. Asimit, Alexandru V. & Badescu, Alexandru M. & Cheung, Ka Chun, 2013. "Optimal reinsurance in the presence of counterparty default risk," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 690-697.
  20. Eeckhoudt, Louis R. & Laeven, Roger J.A. & Schlesinger, Harris, 2020. "Risk apportionment: The dual story," Journal of Economic Theory, Elsevier, vol. 185(C).
  21. Robert, Christian Y. & Therond, Pierre-E., 2014. "Distortion Risk Measures, Ambiguity Aversion And Optimal Effort," ASTIN Bulletin, Cambridge University Press, vol. 44(2), pages 277-302, May.
  22. Hildebrandt, Patrick & Knoke, Thomas, 2011. "Investment decisions under uncertainty--A methodological review on forest science studies," Forest Policy and Economics, Elsevier, vol. 13(1), pages 1-15, January.
  23. Mierzejewski, Fernando, 2008. "The Allocation of Economic Capital in Opaque Financial Conglomerates," MPRA Paper 9432, University Library of Munich, Germany.
  24. Jorge Navarro & Yolanda Águila & Miguel A. Sordo & Alfonso Suárez-Llorens, 2016. "Preservation of Stochastic Orders under the Formation of Generalized Distorted Distributions. Applications to Coherent Systems," Methodology and Computing in Applied Probability, Springer, vol. 18(2), pages 529-545, June.
  25. Kim, Bara & Kim, Jeongsim, 2019. "Stochastic ordering of Gini indexes for multivariate elliptical risks," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 151-158.
  26. Ludkovski, Michael & Rüschendorf, Ludger, 2008. "On comonotonicity of Pareto optimal risk sharing," Statistics & Probability Letters, Elsevier, vol. 78(10), pages 1181-1188, August.
  27. Marisa Cenci & Massimiliano Corradini & Andrea Gheno, 2005. "Dynamic portfolio selection in a dual expected utility theory framework," Departmental Working Papers of Economics - University 'Roma Tre' 0056, Department of Economics - University Roma Tre.
  28. Claudio Zoli, 2002. "Inverse stochastic dominance, inequality measurement and Gini indices," Journal of Economics, Springer, vol. 9(1), pages 119-161, December.
  29. Mierzejewski, Fernando, 2006. "Liquidity preference as rational behaviour under uncertainty," MPRA Paper 2771, University Library of Munich, Germany.
  30. Peng, Liang & Qi, Yongcheng & Wang, Ruodu & Yang, Jingping, 2012. "Jackknife empirical likelihood method for some risk measures and related quantities," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 142-150.
  31. Carole Bernard & Gero Junike & Thibaut Lux & Steven Vanduffel, 2024. "Cost-efficient payoffs under model ambiguity," Finance and Stochastics, Springer, vol. 28(4), pages 965-997, October.
  32. Yaffa Machnes, 2003. "Stochastic Dominance of Pension Plans," Metroeconomica, Wiley Blackwell, vol. 54(1), pages 49-59, February.
  33. Tommaso Lando & Lucio Bertoli-Barsotti, 2019. "Distorted stochastic dominance: a generalized family of stochastic orders," Papers 1909.04767, arXiv.org.
  34. Christian Gourieroux & Wei Liu, 2006. "Sensitivity Analysis of Distortion Risk Measures," Working Papers 2006-33, Center for Research in Economics and Statistics.
  35. Ruodu Wang & Johanna F. Ziegel, 2014. "Distortion Risk Measures and Elicitability," Papers 1405.3769, arXiv.org, revised May 2014.
  36. Greselin, Francesca & Zitikis, Ricardas, 2015. "Measuring economic inequality and risk: a unifying approach based on personal gambles, societal preferences and references," MPRA Paper 65892, University Library of Munich, Germany.
  37. Xiaoqing Liang & Ruodu Wang & Virginia Young, 2021. "Optimal Insurance to Maximize RDEU Under a Distortion-Deviation Premium Principle," Papers 2107.02656, arXiv.org, revised Feb 2022.
  38. Adam Krzemienowski, 2009. "Risk preference modeling with conditional average: an application to portfolio optimization," Annals of Operations Research, Springer, vol. 165(1), pages 67-95, January.
  39. Francesca Greselin & Ričardas Zitikis, 2018. "From the Classical Gini Index of Income Inequality to a New Zenga-Type Relative Measure of Risk: A Modeller’s Perspective," Econometrics, MDPI, vol. 6(1), pages 1-20, January.
  40. Mierzejewski, Fernando, 2006. "Economic capital allocation under liquidity constraints," MPRA Paper 2414, University Library of Munich, Germany.
  41. Engsner, Hampus & Lindholm, Mathias & Lindskog, Filip, 2017. "Insurance valuation: A computable multi-period cost-of-capital approach," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 250-264.
  42. Marisa Cenci & Floriana Filippini, 2005. "Portfolio Selection with minimum transaction lots: an approach with dual expected utility," Departmental Working Papers of Economics - University 'Roma Tre' 0050, Department of Economics - University Roma Tre.
  43. Rolf Aaberge, 2003. "Mean-Spread-Preserving Transformations," Discussion Papers 360, Statistics Norway, Research Department.
  44. Yang, Jianping & Hu, Taizhong, 2016. "New developments on the Lp-metric between a probability distribution and its distortion," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 236-243.
  45. Gupta, Nitin & Misra, Neeraj & Kumar, Somesh, 2015. "Stochastic comparisons of residual lifetimes and inactivity times of coherent systems with dependent identically distributed components," European Journal of Operational Research, Elsevier, vol. 240(2), pages 425-430.
  46. Sakib, S M Nazmuz, 2023. "Application Of Fixed Point Theorem To Insurance Loss Model," OSF Preprints n78rj, Center for Open Science.
  47. Louis Eeckhoudt & Anna Maria Fiori & Emanuela Rosazza Gianin, 2018. "Risk Aversion, Loss Aversion, and the Demand for Insurance," Risks, MDPI, vol. 6(2), pages 1-19, May.
  48. Francesco Andreoli, 2018. "Robust Inference for Inverse Stochastic Dominance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 146-159, January.
  49. Zou, Zhenfeng & Hu, Taizhong, 2024. "Adjusted higher-order expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 1-12.
  50. Darinka Dentcheva & Andrzej Ruszczynski, 2005. "Inverse stochastic dominance constraints and rank dependent expected utility theory," GE, Growth, Math methods 0503001, University Library of Munich, Germany.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.