IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v88y2019icp151-158.html
   My bibliography  Save this article

Stochastic ordering of Gini indexes for multivariate elliptical risks

Author

Listed:
  • Kim, Bara
  • Kim, Jeongsim

Abstract

In this paper, we show that the conjecture, made by Samanthi et al. (2016), on the ordering of Gini indexes of multivariate normal risks with respect to the strength of dependence, is not true. By using the positive semi-definite ordering of covariance matrices, we can obtain the usual stochastic order of the Gini indexes for multivariate normal risks. This can be generalized to multivariate elliptical risks. We also investigate the monotonicity of the Gini indexes in the usual stochastic order when the covariance (dispersion, resp.) matrices of multivariate normal (elliptical, resp) risks increase componentwise. In addition, we derive a large deviation result for the Gini indexes of multivariate normal risks.

Suggested Citation

  • Kim, Bara & Kim, Jeongsim, 2019. "Stochastic ordering of Gini indexes for multivariate elliptical risks," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 151-158.
  • Handle: RePEc:eee:insuma:v:88:y:2019:i:c:p:151-158
    DOI: 10.1016/j.insmatheco.2019.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668717306248
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2019.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Shaun S. & Young, Virginia R., 1998. "Ordering risks: Expected utility theory versus Yaari's dual theory of risk," Insurance: Mathematics and Economics, Elsevier, vol. 22(2), pages 145-161, June.
    2. Frees, Edward W. & Meyers, Glenn & Cummings, A. David, 2011. "Summarizing Insurance Scores Using a Gini Index," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1085-1098.
    3. Louis R. Eeckhoudt & Roger J. A. Laeven, 2022. "Dual Moments and Risk Attitudes," Operations Research, INFORMS, vol. 70(3), pages 1330-1341, May.
    4. N. H. Bingham & Rudiger Kiesel & Rafael Schmidt, 2003. "A semi-parametric approach to risk management," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 426-441.
    5. Samanthi, Ranadeera G.M. & Wei, Wei & Brazauskas, Vytaras, 2017. "Comparing the riskiness of dependent portfolios via nested L-statistics," Annals of Actuarial Science, Cambridge University Press, vol. 11(2), pages 237-252, September.
    6. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2010. "Decision principles derived from risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 294-302, December.
    7. Samanthi, Ranadeera Gamage Madhuka & Wei, Wei & Brazauskas, Vytaras, 2016. "Ordering Gini indexes of multivariate elliptical risks," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 84-91.
    8. Owen, Joel & Rabinovitch, Ramon, 1983. "On the Class of Elliptical Distributions and Their Applications to the Theory of Portfolio Choice," Journal of Finance, American Finance Association, vol. 38(3), pages 745-752, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luigi-Ionut Catana & Anisoara Raducan, 2020. "Stochastic Order for a Multivariate Uniform Distributions Family," Mathematics, MDPI, vol. 8(9), pages 1-10, August.
    2. Vasile Preda & Luigi-Ionut Catana, 2021. "Tsallis Log-Scale-Location Models. Moments, Gini Index and Some Stochastic Orders," Mathematics, MDPI, vol. 9(11), pages 1-22, May.
    3. Chuancun Yin, 2019. "Stochastic ordering of Gini indexes for multivariate elliptical random variables," Papers 1908.01943, arXiv.org, revised Sep 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuancun Yin, 2019. "Stochastic ordering of Gini indexes for multivariate elliptical random variables," Papers 1908.01943, arXiv.org, revised Sep 2019.
    2. Garashchuk, Anna & Castillo, Fernando Isla & Rivera, Pablo Podadera, 2023. "Economic cohesion and development of the European Union's regions and member states - A methodological proposal to measure and identify the degree of regional economic cohesion," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    3. Barry C. Arnold & José María Sarabia, 2018. "Analytic Expressions for Multivariate Lorenz Surfaces," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 84-111, December.
    4. Kim, Joseph H.T. & Kim, So-Yeun, 2019. "Tail risk measures and risk allocation for the class of multivariate normal mean–variance mixture distributions," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 145-157.
    5. Michael R. Metel & Traian A. Pirvu & Julian Wong, 2017. "Risk Management under Omega Measure," Risks, MDPI, vol. 5(2), pages 1-14, May.
    6. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    7. Landsman, Zinoviy & Vanduffel, Steven, 2011. "Bounds for some general sums of random variables," Statistics & Probability Letters, Elsevier, vol. 81(3), pages 382-391, March.
    8. Bao, Te & Diks, Cees & Li, Hao, 2018. "A generalized CAPM model with asymmetric power distributed errors with an application to portfolio construction," Economic Modelling, Elsevier, vol. 68(C), pages 611-621.
    9. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
    10. Jeroen Rombouts & Marno Verbeek, 2009. "Evaluating portfolio Value-at-Risk using semi-parametric GARCH models," Quantitative Finance, Taylor & Francis Journals, vol. 9(6), pages 737-745.
    11. Balvers, Ronald J. & Mitchell, Douglas W., 2000. "Efficient gradualism in intertemporal portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 24(1), pages 21-38, January.
    12. Thomas Eichner, 2010. "Slutzky equations and substitution effects of risks in terms of mean-variance preferences," Theory and Decision, Springer, vol. 69(1), pages 17-26, July.
    13. David A. Hennessy, 2004. "Orthogonal Subgroups for Portfolio Choice," Economics Bulletin, AccessEcon, vol. 7(1), pages 1-7.
    14. Ioannis D Vrontos & Loukia Meligkotsidou & Spyridon D Vrontos, 2011. "Performance evaluation of mutual fund investments: The impact of non-normality and time-varying volatility," Journal of Asset Management, Palgrave Macmillan, vol. 12(4), pages 292-307, September.
    15. Hino, Hideitsu & Wakayama, Keigo & Murata, Noboru, 2013. "Entropy-based sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 105-114.
    16. Yaffa Machnes, 2003. "Stochastic Dominance of Pension Plans," Metroeconomica, Wiley Blackwell, vol. 54(1), pages 49-59, February.
    17. Taras Bodnar & Yarema Okhrin & Valdemar Vitlinskyy & Taras Zabolotskyy, 2018. "Determination and estimation of risk aversion coefficients," Computational Management Science, Springer, vol. 15(2), pages 297-317, June.
    18. Tommaso Lando & Lucio Bertoli-Barsotti, 2019. "Distorted stochastic dominance: a generalized family of stochastic orders," Papers 1909.04767, arXiv.org.
    19. Ortobelli, Sergio & Rachev, Svetlozar & Schwartz, Eduardo, 2000. "The Problem of Optimal Asset Allocation with Stable Distributed Returns," University of California at Los Angeles, Anderson Graduate School of Management qt3zd6q86c, Anderson Graduate School of Management, UCLA.
    20. Peñaranda, Francisco & Sentana, Enrique, 2012. "Spanning tests in return and stochastic discount factor mean–variance frontiers: A unifying approach," Journal of Econometrics, Elsevier, vol. 170(2), pages 303-324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:88:y:2019:i:c:p:151-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.