IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v87y2015icp343-351.html
   My bibliography  Save this item

Forecasting of consumers heat load in district heating systems using the support vector machine with a discrete wavelet transform algorithm

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Andrea Menapace & Simone Santopietro & Rudy Gargano & Maurizio Righetti, 2021. "Stochastic Generation of District Heat Load," Energies, MDPI, vol. 14(17), pages 1-17, August.
  2. Xiaoyu Gao & Chengying Qi & Guixiang Xue & Jiancai Song & Yahui Zhang & Shi-ang Yu, 2020. "Forecasting the Heat Load of Residential Buildings with Heat Metering Based on CEEMDAN-SVR," Energies, MDPI, vol. 13(22), pages 1-19, November.
  3. Lee, Jae Yong & Yim, Taesu, 2021. "Energy and flow demand analysis of domestic hot water in an apartment complex using a smart meter," Energy, Elsevier, vol. 229(C).
  4. Pengwei Su & Xue Tian & Yan Wang & Shuai Deng & Jun Zhao & Qingsong An & Yongzhen Wang, 2017. "Recent Trends in Load Forecasting Technology for the Operation Optimization of Distributed Energy System," Energies, MDPI, vol. 10(9), pages 1-13, August.
  5. Liu, Guoqiang & Zhou, Xuan & Yan, Junwei & Yan, Gang, 2021. "A temperature and time-sharing dynamic control approach for space heating of buildings in district heating system," Energy, Elsevier, vol. 221(C).
  6. Gu, Jihao & Wang, Jin & Qi, Chengying & Min, Chunhua & Sundén, Bengt, 2018. "Medium-term heat load prediction for an existing residential building based on a wireless on-off control system," Energy, Elsevier, vol. 152(C), pages 709-718.
  7. Donghun Lee & Seok Mann Yoon & Jaeseung Lee & Kwanho Kim & Sang Hwa Song, 2020. "Applying Deep Learning to the Heat Production Planning Problem in a District Heating System," Energies, MDPI, vol. 13(24), pages 1-17, December.
  8. Xue, Puning & Jiang, Yi & Zhou, Zhigang & Chen, Xin & Fang, Xiumu & Liu, Jing, 2019. "Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms," Energy, Elsevier, vol. 188(C).
  9. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
  10. Trabert, Ulrich & Pag, Felix & Orozaliev, Janybek & Jordan, Ulrike & Vajen, Klaus, 2024. "Peak shaving at system level with a large district heating substation using deep learning forecasting models," Energy, Elsevier, vol. 301(C).
  11. Vogler–Finck, P.J.C. & Bacher, P. & Madsen, H., 2017. "Online short-term forecast of greenhouse heat load using a weather forecast service," Applied Energy, Elsevier, vol. 205(C), pages 1298-1310.
  12. Xue, Guixiang & Qi, Chengying & Li, Han & Kong, Xiangfei & Song, Jiancai, 2020. "Heating load prediction based on attention long short term memory: A case study of Xingtai," Energy, Elsevier, vol. 203(C).
  13. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
  14. Binglin Li & Yong Shao & Yufeng Lian & Pai Li & Qiang Lei, 2023. "Bayesian Optimization-Based LSTM for Short-Term Heating Load Forecasting," Energies, MDPI, vol. 16(17), pages 1-14, August.
  15. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
  16. Ji, Ying & Xu, Peng & Duan, Pengfei & Lu, Xing, 2016. "Estimating hourly cooling load in commercial buildings using a thermal network model and electricity submetering data," Applied Energy, Elsevier, vol. 169(C), pages 309-323.
  17. Zhong, Wei & Huang, Wei & Lin, Xiaojie & Li, Zhongbo & Zhou, Yi, 2020. "Research on data-driven identification and prediction of heat response time of urban centralized heating system," Energy, Elsevier, vol. 212(C).
  18. Chanuk Lee & Dong Eun Jung & Donghoon Lee & Kee Han Kim & Sung Lok Do, 2021. "Prediction Performance Analysis of Artificial Neural Network Model by Input Variable Combination for Residential Heating Loads," Energies, MDPI, vol. 14(3), pages 1-19, February.
  19. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
  20. F. Marta L. Di Lascio & Andrea Menapace & Maurizio Righetti, 2020. "Joint and conditional dependence modelling of peak district heating demand and outdoor temperature: a copula-based approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 373-395, June.
  21. Xue, Puning & Zhou, Zhigang & Fang, Xiumu & Chen, Xin & Liu, Lin & Liu, Yaowen & Liu, Jing, 2017. "Fault detection and operation optimization in district heating substations based on data mining techniques," Applied Energy, Elsevier, vol. 205(C), pages 926-940.
  22. Wang, Yanmin & Li, Zhiwei & Liu, Junjie & Pei, Mingzhe & Zhao, Yan & Lu, Xuan, 2023. "Data-driven analysis and prediction of indoor characteristic temperature in district heating systems," Energy, Elsevier, vol. 282(C).
  23. Guo, Yabin & Wang, Jiangyu & Chen, Huanxin & Li, Guannan & Liu, Jiangyan & Xu, Chengliang & Huang, Ronggeng & Huang, Yao, 2018. "Machine learning-based thermal response time ahead energy demand prediction for building heating systems," Applied Energy, Elsevier, vol. 221(C), pages 16-27.
  24. Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
  25. Runge, Jason & Saloux, Etienne, 2023. "A comparison of prediction and forecasting artificial intelligence models to estimate the future energy demand in a district heating system," Energy, Elsevier, vol. 269(C).
  26. Fang, Tingting & Lahdelma, Risto, 2016. "Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system," Applied Energy, Elsevier, vol. 179(C), pages 544-552.
  27. Han, Yongming & Wu, Hao & Geng, Zhiqiang & Zhu, Qunxiong & Gu, Xiangbai & Yu, Bin, 2020. "Review: Energy efficiency evaluation of complex petrochemical industries," Energy, Elsevier, vol. 203(C).
  28. Hribar, Rok & Potočnik, Primož & Šilc, Jurij & Papa, Gregor, 2019. "A comparison of models for forecasting the residential natural gas demand of an urban area," Energy, Elsevier, vol. 167(C), pages 511-522.
  29. Cao, Yijia & Wang, Xifan & Li, Yong & Tan, Yi & Xing, Jianbo & Fan, Ruixiang, 2016. "A comprehensive study on low-carbon impact of distributed generations on regional power grids: A case of Jiangxi provincial power grid in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 766-778.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.